gpt4 book ai didi

scala - 使用 Spark 将 json 映射到案例类(字段名称中的空格)

转载 作者:行者123 更新时间:2023-12-05 04:08:57 26 4
gpt4 key购买 nike

我正在尝试使用 spark Dataset API 读取一个 json 文件,问题是这个 json 在某些字段名称中包含空格。

这将是一个 json 行

{"Field Name" : "value"}

我的案例类需要像这样

case class MyType(`Field Name`: String)

然后我可以将文件加载到 DataFrame 中,它将加载正确的模式

val dataframe = spark.read.json(path)

当我尝试将 DataFrame 转换为 Dataset[MyType] 时出现问题

dataframe.as[MyType]

Encoder[MyType] 加载的 StructSchema 是错误的,它引入了 $u0020 而不是空格,我得到以下错误

cannot resolve '`Field$u0020Name`' given input columns: [Field Name];
org.apache.spark.sql.AnalysisException: cannot resolve '`Field$u0020Name`' given input columns: [Field Name];
at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:88)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:85)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:289)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:289)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:288)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:286)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:286)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4$$anonfun$apply$11.apply(TreeNode.scala:335)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.immutable.List.map(List.scala:285)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:333)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:286)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$transformExpressionsUp$1.apply(QueryPlan.scala:268)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$transformExpressionsUp$1.apply(QueryPlan.scala:268)
at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpression$1(QueryPlan.scala:279)
at org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$1(QueryPlan.scala:289)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$6.apply(QueryPlan.scala:298)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.plans.QueryPlan.mapExpressions(QueryPlan.scala:298)
at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:268)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:85)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:78)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:127)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:78)
at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:91)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.resolveAndBind(ExpressionEncoder.scala:256)
at org.apache.spark.sql.Dataset.<init>(Dataset.scala:206)
at org.apache.spark.sql.Dataset.<init>(Dataset.scala:170)
at org.apache.spark.sql.Dataset$.apply(Dataset.scala:61)
at org.apache.spark.sql.Dataset.as(Dataset.scala:380)
at com.radius.floodgate.preprocess.BomboraSuite$$anonfun$5.apply$mcV$sp(BomboraSuite.scala:151)
at com.radius.floodgate.preprocess.BomboraSuite$$anonfun$5.apply(BomboraSuite.scala:141)
at com.radius.floodgate.preprocess.BomboraSuite$$anonfun$5.apply(BomboraSuite.scala:141)
at org.scalatest.OutcomeOf$class.outcomeOf(OutcomeOf.scala:85)
at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104)
at org.scalatest.Transformer.apply(Transformer.scala:22)
at org.scalatest.Transformer.apply(Transformer.scala:20)
at org.scalatest.FunSuiteLike$$anon$1.apply(FunSuiteLike.scala:186)
at org.scalatest.TestSuite$class.withFixture(TestSuite.scala:196)
at org.scalatest.FunSuite.withFixture(FunSuite.scala:1560)
at org.scalatest.FunSuiteLike$class.invokeWithFixture$1(FunSuiteLike.scala:183)
at org.scalatest.FunSuiteLike$$anonfun$runTest$1.apply(FunSuiteLike.scala:196)
at org.scalatest.FunSuiteLike$$anonfun$runTest$1.apply(FunSuiteLike.scala:196)
at org.scalatest.SuperEngine.runTestImpl(Engine.scala:289)
at org.scalatest.FunSuiteLike$class.runTest(FunSuiteLike.scala:196)
at org.scalatest.FunSuite.runTest(FunSuite.scala:1560)
at org.scalatest.FunSuiteLike$$anonfun$runTests$1.apply(FunSuiteLike.scala:229)
at org.scalatest.FunSuiteLike$$anonfun$runTests$1.apply(FunSuiteLike.scala:229)
at org.scalatest.SuperEngine$$anonfun$traverseSubNodes$1$1.apply(Engine.scala:396)
at org.scalatest.SuperEngine$$anonfun$traverseSubNodes$1$1.apply(Engine.scala:384)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.scalatest.SuperEngine.traverseSubNodes$1(Engine.scala:384)
at org.scalatest.SuperEngine.org$scalatest$SuperEngine$$runTestsInBranch(Engine.scala:379)
at org.scalatest.SuperEngine.runTestsImpl(Engine.scala:461)
at org.scalatest.FunSuiteLike$class.runTests(FunSuiteLike.scala:229)
at org.scalatest.FunSuite.runTests(FunSuite.scala:1560)
at org.scalatest.Suite$class.run(Suite.scala:1147)
at org.scalatest.FunSuite.org$scalatest$FunSuiteLike$$super$run(FunSuite.scala:1560)
at org.scalatest.FunSuiteLike$$anonfun$run$1.apply(FunSuiteLike.scala:233)
at org.scalatest.FunSuiteLike$$anonfun$run$1.apply(FunSuiteLike.scala:233)
at org.scalatest.SuperEngine.runImpl(Engine.scala:521)
at org.scalatest.FunSuiteLike$class.run(FunSuiteLike.scala:233)
at com.radius.floodgate.preprocess.BomboraSuite.org$scalatest$BeforeAndAfterAll$$super$run(BomboraSuite.scala:18)
at org.scalatest.BeforeAndAfterAll$class.liftedTree1$1(BeforeAndAfterAll.scala:213)
at org.scalatest.BeforeAndAfterAll$class.run(BeforeAndAfterAll.scala:210)
at com.radius.floodgate.preprocess.BomboraSuite.run(BomboraSuite.scala:18)
at org.scalatest.tools.SuiteRunner.run(SuiteRunner.scala:45)
at org.scalatest.tools.Runner$$anonfun$doRunRunRunDaDoRunRun$1.apply(Runner.scala:1340)
at org.scalatest.tools.Runner$$anonfun$doRunRunRunDaDoRunRun$1.apply(Runner.scala:1334)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.scalatest.tools.Runner$.doRunRunRunDaDoRunRun(Runner.scala:1334)
at org.scalatest.tools.Runner$$anonfun$runOptionallyWithPassFailReporter$2.apply(Runner.scala:1011)
at org.scalatest.tools.Runner$$anonfun$runOptionallyWithPassFailReporter$2.apply(Runner.scala:1010)
at org.scalatest.tools.Runner$.withClassLoaderAndDispatchReporter(Runner.scala:1500)
at org.scalatest.tools.Runner$.runOptionallyWithPassFailReporter(Runner.scala:1010)
at org.scalatest.tools.Runner$.run(Runner.scala:850)
at org.scalatest.tools.Runner.run(Runner.scala)
at org.jetbrains.plugins.scala.testingSupport.scalaTest.ScalaTestRunner.runScalaTest2(ScalaTestRunner.java:138)
at org.jetbrains.plugins.scala.testingSupport.scalaTest.ScalaTestRunner.main(ScalaTestRunner.java:28)

是否有解决此问题的方法?

最佳答案

解决方法是创建一个不带空格的列名(带下划线)并重命名 DF 列以匹配案例类列名。

case class MyType(Field_Name: String)

dataframe.withColumnRenamed("Field Name", "Field_Name").as[MyType]

关于scala - 使用 Spark 将 json 映射到案例类(字段名称中的空格),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46980244/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com