gpt4 book ai didi

python - 如何过滤自定义数据集的 COCO 数据集类和注释?

转载 作者:行者123 更新时间:2023-12-05 03:55:20 30 4
gpt4 key购买 nike

我能够使用下面的代码和 COCO API 过滤图像,我为我需要的所有类多次执行此代码,这是类别 person 的示例,我这样做了用于 car

我现在要做的,是过滤数据集(instances_train2017.json)的注解,并保存在json instances_train2017.json中。

# Load categories with the specified ids, in this case all
cats = coco.loadCats(coco.getCatIds())
nms = [cat['name'] for cat in cats]
print('COCO categories: \n{}\n'.format(' '.join(nms)))

# Get all images containing given categories
catIds = coco.getCatIds(catNms=['person'])
imgIds = coco.getImgIds(catIds=catIds)
images = coco.loadImgs(imgIds)
print("imgIds: ", len(imgIds))
#print("images: ", images)

# download images for specific category
for im in images:
print("im: ", im)
img_data = requests.get(im['coco_url']).content
with open('customCoco/images/train2017/' + im['file_name'], 'wb') as handler:
handler.write(img_data)

我尝试使用 COCO API,但我没有得到我想要的 COCO 格式,例如 intances_train2017.json)

# download annotation for specific category
for im in images:
annIds = coco.getAnnIds(imgIds=im['id'], catIds=catIds, iscrowd=None)
anns = coco.loadAnns(annIds)
print("anns: ", anns)

我找到这篇文章:https://github.com/cocodataset/cocoapi/issues/271但它以我不想要的 csv 格式保存,我想要相同的文件,但只是过滤了。

最佳答案

我推荐 Jalagarto 的 coco_utils/COCO API 包装器:https://github.com/Jalagarto/coco_utils ,它生成图像和注释。在下面的代码中,我将其扩展为适用于多个类。

其他资源:

Useful Tutorial/Article

COCO dataset format

Visualization of Image/Annotation

xD 希望对您有所帮助!!

"""
1. saves images/annotations from categories
2. creates new json by filtering the main json file

coco_categories = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']

Expected Directory:
script.py
COCO[
annotations
val2017
train2017
]
"""

from pycocotools.coco import COCO
import requests
import os
from os.path import join
from tqdm import tqdm
import json


class coco_category_filter:
"""
Downloads images of one category & filters jsons
to only keep annotations of this category
"""

def __init__(self, json_path, _categ):
self.coco = COCO(json_path) # instanciate coco class
self.categ = ''
self.images = self.get_imgs_from_json(_categ)

def get_imgs_from_json(self, _categ):
"""returns image names of the desired category"""
# Get category ids
self.catIds = self.coco.getCatIds(catNms=_categ)
assert len(self.catIds) > 0, "[ERROR] cannot find category index for {}".format(_categ)
print("catIds: ", self.catIds)
# Get the corresponding image ids and images using loadImgs
imgIds = []
for c in self.catIds:
imgIds += self.coco.getImgIds(catIds=c) # get images over categories (logical OR)
imgIds = list(set(imgIds)) # remove duplicates
images = self.coco.loadImgs(imgIds)
print(f"{len(images)} images of '{self.categ}' instances")
return images

def save_imgs(self, imgs_dir):
"""saves the images of this category"""
print("Saving the images with required categories ...")
os.makedirs(imgs_dir, exist_ok=True)
# Save the images into a local folder
for im in tqdm(self.images):
img_data = requests.get(im['coco_url']).content
with open(os.path.join(imgs_dir, im['file_name']), 'wb') as handler:
handler.write(img_data)

def filter_json_by_category(self, json_dir):
"""creates a new json with the desired category"""
# {'supercategory': 'person', 'id': 1, 'name': 'person'}
### Filter images:
print("Filtering the annotations ... ")
imgs_ids = [x['id'] for x in self.images] # get img_ids of imgs with the category (prefiltered)
new_imgs = [x for x in self.coco.dataset['images'] if x['id'] in imgs_ids] # select images by img_ids
catIds = self.catIds
### Filter annotations
new_annots = [x for x in self.coco.dataset['annotations'] if x['category_id'] in catIds] # select annotations based on category id
### Reorganize the ids (note for reordering subset 1-N)
#new_imgs, annotations = self.modify_ids(new_imgs, new_annots)
### Filter categories
new_categories = [x for x in self.coco.dataset['categories'] if x['id'] in catIds]
print("new_categories: ", new_categories)
data = {
"info": self.coco.dataset['info'],
"licenses": self.coco.dataset['licenses'],
"images": new_imgs,
"annotations": new_annots,
"categories": new_categories
}
print("saving json: ")
with open(os.path.join(json_dir, "coco_annotation.json"), 'w') as f:
json.dump(data, f)

def modify_ids(self, images, annotations):
"""
creates new ids for the images. I.e., maps existing image id to new subset image id and returns the dictionaries back
images: list of images dictionaries

images[n]['id'] # id of image
annotations[n]['id'] # id of annotation
images[n]['id'] --> annotations[n]['image_id'] # map 'id' of image to 'image_id' in annotation
"""
print("Reinitialicing images and annotation IDs ...")
### Images
map_old_to_new_id = {} # necessary for the annotations!
for n, im in enumerate(images):
map_old_to_new_id[images[n]['id']] = n + 1 # dicto with old im_ids and new im_ids
images[n]['id'] = n + 1 # reorganize the ids
### Annotations
for n, ann in enumerate(annotations):
annotations[n]['id'] = n + 1
old_image_id = annotations[n]['image_id']
annotations[n]['image_id'] = map_old_to_new_id[old_image_id] # replace im_ids in the annotations as well
return images, annotations


def main(subset, year, root_dir, categories, experiment):
json_file = join(root_dir, 'annotations/instances_' + subset + year + '.json') # local path

# Output files
img_dir = join(root_dir, experiment, 'images')
os.makedirs(img_dir, exist_ok=True)
json_dir = join(root_dir, experiment, 'annotations')
os.makedirs(json_dir, exist_ok=True)

# Methods
coco_filter = coco_category_filter(json_file, categories) # instantiate class
coco_filter.save_imgs(img_dir)
coco_filter.filter_json_by_category(json_dir)


if __name__ == '__main__':
subset, year = 'val', '2017' # val - train
root_dir = './datasets/COCO'
experiment = "my_custom_dataset"
categories = ['person', 'bicycle', 'car'] # can be multiple categories
main(subset, year, root_dir, categories, experiment)

关于python - 如何过滤自定义数据集的 COCO 数据集类和注释?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60227833/

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com