- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
假设我有一个包含因子和响应变量的数据。我的问题:
(m3 和 m4)
的每个级别都有一个单独的模型,那么这与模型 m1
和 m2
?
哪个是最佳模型/方法?
例如,我使用
nlme
包中的 Orthodont
数据。
library(nlme)
data = Orthodont
data2 <- subset(data, Sex=="Male")
data3 <- subset(data, Sex=="Female")
m1 <- lm (distance ~ age + Sex, data = Orthodont)
m2 <- lme(distance ~ age , data = Orthodont, random = ~ 1|Sex)
m3 <- lm(distance ~ age, data= data2
m4 <- lm(distance ~ age, data= data3)
最佳答案
问题 1:线性回归和混合效应模型如何处理因子变量?
A1:因子被编码为虚拟变量(1 = true,0 = false)。
例如,模型 1 的系数是:
coef(m1) #lm( distance ~ age + Sex)
#(Intercept) age SexFemale
# 17.7067130 0.6601852 -2.3210227
因此计算距离为:
距离 = 17.71 + 0.66*年龄 - 2.32*性别女性
其中 SexFemale 为 0 表示男性,1 表示女性。这简化为:
男性: 距离 = 17.71 + 0.66*年龄
女:距离=15.39+0.66*年龄
如果模型有更多类别(例如超重、健康、体重不足),则相应地添加虚拟变量:
R代码:lm(距离~年龄+体重状态)
计算:距离 = 年龄 + weightIsOver + weightIsHealthy + weightIsUnder
为每种体重类型创建三个单独的系数,并根据个人的体重类型乘以 0 或 1。
问题 2:如果我对因子变量的每个水平(m3
和 m4
)都有一个单独的模型,那么它与模型有何不同 m1
和 m2
?
A2:斜率和截距根据您的模型而变化。
m1 是多元线性回归 (MLR),其中截距根据性别而变化,但年龄的斜率相同。我们也可以将其称为随机斜率。线性混合效应 (LME) 模型 m2 还指定了一个随性别 (1|Sex
) 变化的截距。
m3 和 m4 ~ 随机斜率和随机截距模型,因为数据是分开的。
让我们指定一个具有随机斜率和随机截距的 LME:
m2a <- lme(distance ~ age, data = Orthodont, random= ~ age | Sex,
control = lmeControl(opt="optim"))
#Changed the optimizer to achieve convergence
结合系数可以让我们检查模型的结构:
#Combine the model coefficients
coefs <- rbind(
coef(m1)[1:2],
coef(m1)[1:2] + c(coef(m1)[3], 0), #female coefficient added to intercept
coef(m2),
coef(m2a),
coef(m3),
coef(m4)); names(coefs) <- c("intercept", "age")
model.coefs <- data.frame(
model = paste0("m", c(1,1,2,2,"2a", "2a",3,4)),
type = rep(c("MLR", "LME randomIntercept", "LME randomSlopes",
"separate LM"), each=2),
Sex = rep(c("male","female"), 4),
coefs, row.names = 1:8)
model.coefs
# model model2 Sex intercept age #intercept & slope
#1 m1 MLR male 17.70671 0.6601852 #different same
#2 m1 MLR female 15.38569 0.6601852
#3 m2 LME randomIntercept male 17.67197 0.6601852 #different same
#4 m2 LME randomIntercept female 15.43622 0.6601852
#5 m2a LME randomSlopes male 16.65625 0.7540780 #different different
#6 m2a LME randomSlopes female 16.91363 0.5236138
#7 m3 separate LM male 16.34062 0.7843750 #different different
#8 m4 separate LM female 17.37273 0.4795455
问题 3:哪种模型/方法最好?
A3:视情况而定,但可能是混合效应模型。
在您的示例中,m3 和 m4 彼此没有关系,并且每个性别固有地具有不同的斜率。可以检查 LME 模型以确定是否需要随机斜率(例如 anova(m2, m2a)
)。当您有多个级别(例如学校类(class)内的学生)和重复测量(同一主题或跨时间的多项测量)时,混合效应模型是通用的。您还可以指定 covariance structures使用这些模型。
为了可视化这些不同的模型,让我们看看 Orthodont
数据:
library(ggplot)
gg <- ggplot(Orthodont, aes(age, distance, fill=Sex)) + theme_bw() +
geom_point(shape=21, position= position_dodge(width=0.2)) +
stat_summary(fun.y = "mean", geom="point", size=8, shape=22, colour="black" ) +
scale_fill_manual(values = c("Male" = "black", "Female" = "white"))
圆圈 = 原始数据,正方形 = 平均值。距离似乎随着年龄的增长而线性增加。男性的距离比女性高。斜率也可能因性别而异,与男性相比,女性的距离随年龄增加的幅度较小。 (注意:原始数据已在 x 轴上略微闪避以避免过度绘制。)
将我们的模型添加到数据中并放大:
gg1 <- gg +
geom_abline(data = model.coefs, size=1.5,
aes(slope = age, intercept = intercept, colour = type, linetype = Sex))
gg1 + coord_cartesian(ylim = c(21, 27)) #zoom in
在这里,我们看到具有随机截距的 LME 模型类似于 MLR 模型。具有随机截距和随机斜率的 LME 类似于子集数据上的单独 LM。
最后,这里是如何使用 lme4
包制作等同于 m2
的方法:
m2 <- lme(distance ~ age , data = Orthodont, random = ~ 1|Sex)
library(lme4)
m5 <- lmer(distance ~ age + (1|Sex), data = Orthodont) #same as m2
更多资源:
(Generalized) Linear Mixed Models FAQ
Comparing nlme
and lme4
使用 Orthodont
数据。
关于r - 回归模型如何处理因子变量?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36555639/
[在此处输入图像描述][1]我正在努力弄清楚回归是否是我需要走的路线,以便解决我当前使用 Python 的挑战。这是我的场景: 我有一个 195 行 x 25 列的 Pandas Dataframe
我想训练回归模型(不是分类),其输出是连续数字。 假设我有输入变量 X,其范围在 -70 到 70 之间。我有输出变量 Y,其范围在 -5 到 5 之间。X 有 39 个特征,Y 有 16 个特征,每
我想使用神经网络逼近 sinc 函数。这是我的代码: import tensorflow as tf from keras.layers import Dense from keras.models
我对 postgres 表做了一些更改,我想将其恢复到以前的状态。没有数据库的备份。有办法吗?比如,postgres 会自动拍摄快照并将其存储在某个地方,还是原始数据会永远丢失? 最佳答案 默认情况下
我有大约 100 个 7x7 因变量矩阵(所以有 49 个因变量)。我的自变量是时间。我正在做一个物理项目,我应该通过求解 ODE 得到一个矩阵函数(矩阵的每个元素都是时间的函数)。我使用了 nump
我之前曾被告知——出于完全合理的原因——当结果变量为二元变量时(即是/否、真/假、赢/输等),不应运行 OLS 回归。但是,我经常阅读经济学/其他社会科学方面的论文,其中研究人员对二元变量运行 OLS
您好,我正在使用生命线包进行 Cox 回归。我想检查非二元分类变量的影响。有内置的方法吗?或者我应该将每个类别因子转换为一个数字?或者,在生命线中使用 kmf fitter,是否可以对每个因素执行此操
作为后续 this question ,我拟合了具有定量和定性解释变量之间相互作用的多元 Logistic 回归。 MWE如下: Type |z|) (Intercept) -0.65518
我想在单个动物园对象中的多对数据系列上使用 lm 执行滚动回归。 虽然我能够通过以下代码对动物园对象中的一对数据系列执行滚动回归: FunLm seat time(seat) seat fm
是否有一种简单的方法可以在 R 中拟合多元回归,其中因变量根据 Skellam distribution 分布? (两个泊松分布计数之间的差异)?比如: myskellam <- glm(A ~ B
包含各种特征和回归目标(称为 qval)的数据集用于训练 XGBoost 回归器。该值 qval 介于 0 和 1 之间,应具有以下分布: 到目前为止,还不错。但是,当我使用 xgb.save_mod
这有效: felm(y ~ x1 + x2 | fe1 + fe2 | 0 | , data = data) 我想要: fixedeffects = "fe1 + fe2" felm(y ~ x1
这有效: felm(y ~ x1 + x2 | fe1 + fe2 | 0 | , data = data) 我想要: fixedeffects = "fe1 + fe2" felm(y ~ x1
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 我们不允许提问寻求书籍、工具、软件库等的推荐。您可以编辑问题,以便用事实和引用来回答。 关闭 7 年前。
我刚刚开始使用 R 进行统计分析,而且我还在学习。我在 R 中创建循环时遇到问题。我有以下案例,我想知道是否有人可以帮助我。对我来说,这似乎是不可能的,但对你们中的一些人来说,这只是小菜一碟。我有不同
是否可以在 sklearn 中使用或不使用(即仅使用截距)预测器来运行回归(例如逻辑回归)?这似乎是一个相当标准的类型分析,也许这些信息已经在输出中可用。 我发现的唯一相关的东西是sklearn.sv
假设我对一些倾斜的数据分布执行 DNN 回归任务。现在我使用平均绝对误差作为损失函数。 机器学习中的所有典型方法都是最小化平均损失,但对于倾斜来说这是不恰当的。从实际角度来看,最好尽量减少中值损失。我
我正在对公寓特征进行线性回归分析,然后预测公寓的价格。目前,我已经收集了我所在城市 13000 套公寓的特征。我有 23-25 个特征,我不确定在公寓价格预测中拥有如此多的特征是否正常。 我有以下功能
我是 ML 新手,对 catboost 有疑问。所以,我想预测函数值(例如 cos | sin 等)。我回顾了一切,但我的预测始终是直线 是否可能,如果可能,我该如何解决我的问题 我很高兴收到任何评论
我目前已经为二进制类实现了概率(至少我这么认为)。现在我想扩展这种回归方法,并尝试将其用于波士顿数据集。不幸的是,我的算法似乎被卡住了,我当前运行的代码如下所示: from sklearn impor
我是一名优秀的程序员,十分优秀!