gpt4 book ai didi

glsl - 如何在 GLSL 片段着色器中获得相对于法线的视角?

转载 作者:行者123 更新时间:2023-12-05 03:06:18 33 4
gpt4 key购买 nike

我刚刚开始使用 openframeworks 中的着色器,并且正在尝试编写一个片段着色器,它根据片段的观看角度来更改片段的颜色。例如,给定一个矩形,如果从正面看(相机与法线平行)它会是红色,但如果从侧面看它会变成蓝色。

对于一个球体,类似地,它明显的中间应该是红色的(因为相机垂直于那些面),而明显的边缘应该是蓝色的。

我想我可以根据相对于法线的视角来设置片段颜色,但是,我无法找到任何 GLSL 输入变量来提供必要的信息。 gl_FragCoord 似乎不起作用,因为它只给出相对于窗口的位置,而 gl_PointCoord 给出相对于模型本身的位置,但不是从它的观察位置。

获得视角/实现此效果的直接方法是什么?

我正在使用 GLSL 1.2 版,并使用 openframeworks 0.9.8 加载着色器。

最佳答案

For a sphere, similarly, its apparent middle would be red (as the camera is perpendicular to those faces), while the apparent edges should be blue.

为了达到你想要的效果,我建议计算一个完美的强度 lambertian diffuse光,从前面照亮场景。在视空间中很容易进行这种计算。

朗伯反射通常用作漫反射的模型。此技术会导致所有闭合的多边形(例如 3D 网格中的三角形)在渲染时在所有方向上均等地反射光线。扩散系数由法向量与光向量的夹角计算得到。

f_Lambertian = max( 0.0, dot( N, L ) )

其中N是表面的法向量,L是指向光源的向量。
参见 How does this faking the light work on aerotwist?获取详细信息。

Right-handed 的 View 空间中系统,Z 轴指向 View 外(请注意,在右手系统中,Z 轴是 X 轴和 Y 轴的叉积)。

enter image description here

这意味着可以通过视空间中的法向量与视空间中的“光”向量的点积来计算光强度,即视空间Z轴(0, 0, 1) .

以下着色器将具有指向 View 的法向量的片段着色为红色。法向量指向侧面的碎片是蓝色的:

顶点着色器:

in vec3 inPos;
in vec3 inNV;

out vec3 viewNV;

uniform mat4 u_projectionMat44;
uniform mat4 u_viewMat44;
uniform mat4 u_modelMat44;

void main()
{
viewNV = mat3(u_viewMat44 * u_modelMat44) * inNV;

vec4 pos = u_viewMat44 * u_modelMat44 * vec4( inPos, 1.0 );
gl_Position = u_projectionMat44 * pos;
}

片段着色器:

in vec3 viewNV;

void main()
{
vec3 N = normalize(viewNV);
vec3 L = vec3(0.0, 0.0, 1.0);
float NdotL = dot(N, L);

vec3 color = vec3(NdotL, 0.0, 1.0-NdotL);

gl_FragColor = vec4( color.rgb, 1.0 );
}

请参阅 WebGL 示例,它演示了旋转立方体的效果:

(function loadscene() {

var gl, progDraw, vp_size;
var bufCube = {};

function render(delteMS){
Camera.create();
Camera.vp = vp_size;

gl.viewport( 0, 0, vp_size[0], vp_size[1] );
gl.enable( gl.DEPTH_TEST );
gl.clearColor( 0.0, 0.0, 0.0, 1.0 );
gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT );

// set up draw shader
ShaderProgram.Use( progDraw );
ShaderProgram.SetUniformM44( progDraw, "u_projectionMat44", Camera.Perspective() );
ShaderProgram.SetUniformM44( progDraw, "u_viewMat44", Camera.LookAt() );
var modelMat = IdentityMat44()
modelMat = RotateAxis( modelMat, CalcAng( delteMS, 13.0 ), 0 );
modelMat = RotateAxis( modelMat, CalcAng( delteMS, 17.0 ), 1 );
ShaderProgram.SetUniformM44( progDraw, "u_modelMat44", modelMat );

// draw scene
VertexBuffer.Draw( bufCube );

requestAnimationFrame(render);
}

function resize() {
//vp_size = [gl.drawingBufferWidth, gl.drawingBufferHeight];
vp_size = [window.innerWidth, window.innerHeight]
canvas.width = vp_size[0];
canvas.height = vp_size[1];
}

function initScene() {

canvas = document.getElementById( "canvas");
gl = canvas.getContext( "experimental-webgl" );
if ( !gl )
return null;

progDraw = ShaderProgram.Create(
[ { source : "draw-shader-vs", stage : gl.VERTEX_SHADER },
{ source : "draw-shader-fs", stage : gl.FRAGMENT_SHADER }
] );
if ( !progDraw.progObj )
return null;
progDraw.inPos = ShaderProgram.AttributeIndex( progDraw, "inPos" );
progDraw.inNV = ShaderProgram.AttributeIndex( progDraw, "inNV" );
// create cube
var cubePos = [
-1.0, -1.0, 1.0, 1.0, -1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0,
-1.0, -1.0, -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, -1.0 ];
var cubeCol = [ 1.0, 0.0, 0.0, 1.0, 0.5, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 ];
var cubeHlpInx = [ 0, 1, 2, 3, 1, 5, 6, 2, 5, 4, 7, 6, 4, 0, 3, 7, 3, 2, 6, 7, 1, 0, 4, 5 ];
var cubePosData = [];
for ( var i = 0; i < cubeHlpInx.length; ++ i ) {
cubePosData.push( cubePos[cubeHlpInx[i]*3], cubePos[cubeHlpInx[i]*3+1], cubePos[cubeHlpInx[i]*3+2] );
}
var cubeNVData = [];
for ( var i1 = 0; i1 < cubeHlpInx.length; i1 += 4 ) {
var nv = [0, 0, 0];
for ( i2 = 0; i2 < 4; ++ i2 ) {
var i = i1 + i2;
nv[0] += cubePosData[i*3]; nv[1] += cubePosData[i*3+1]; nv[2] += cubePosData[i*3+2];
}
for ( i2 = 0; i2 < 4; ++ i2 )
cubeNVData.push( nv[0], nv[1], nv[2] );
}
var cubeColData = [];
for ( var is = 0; is < 6; ++ is ) {
for ( var ip = 0; ip < 4; ++ ip ) {
cubeColData.push( cubeCol[is*3], cubeCol[is*3+1], cubeCol[is*3+2] );
}
}
var cubeInxData = [];
for ( var i = 0; i < cubeHlpInx.length; i += 4 ) {
cubeInxData.push( i, i+1, i+2, i, i+2, i+3 );
}
bufCube = VertexBuffer.Create(
[ { data : cubePosData, attrSize : 3, attrLoc : progDraw.inPos },
{ data : cubeNVData, attrSize : 3, attrLoc : progDraw.inNV } ],
cubeInxData );

window.onresize = resize;
resize();
requestAnimationFrame(render);
}

function Fract( val ) {
return val - Math.trunc( val );
}
function CalcAng( deltaTime, intervall ) {
return Fract( deltaTime / (1000*intervall) ) * 2.0 * Math.PI;
}
function CalcMove( deltaTime, intervall, range ) {
var pos = self.Fract( deltaTime / (1000*intervall) ) * 2.0
var pos = pos < 1.0 ? pos : (2.0-pos)
return range[0] + (range[1] - range[0]) * pos;
}
function EllipticalPosition( a, b, angRag ) {
var a_b = a * a - b * b
var ea = (a_b <= 0) ? 0 : Math.sqrt( a_b );
var eb = (a_b >= 0) ? 0 : Math.sqrt( -a_b );
return [ a * Math.sin( angRag ) - ea, b * Math.cos( angRag ) - eb, 0 ];
}

glArrayType = typeof Float32Array !="undefined" ? Float32Array : ( typeof WebGLFloatArray != "undefined" ? WebGLFloatArray : Array );

function IdentityMat44() {
var m = new glArrayType(16);
m[0] = 1; m[1] = 0; m[2] = 0; m[3] = 0;
m[4] = 0; m[5] = 1; m[6] = 0; m[7] = 0;
m[8] = 0; m[9] = 0; m[10] = 1; m[11] = 0;
m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 1;
return m;
};

function RotateAxis(matA, angRad, axis) {
var aMap = [ [1, 2], [2, 0], [0, 1] ];
var a0 = aMap[axis][0], a1 = aMap[axis][1];
var sinAng = Math.sin(angRad), cosAng = Math.cos(angRad);
var matB = new glArrayType(16);
for ( var i = 0; i < 16; ++ i ) matB[i] = matA[i];
for ( var i = 0; i < 3; ++ i ) {
matB[a0*4+i] = matA[a0*4+i] * cosAng + matA[a1*4+i] * sinAng;
matB[a1*4+i] = matA[a0*4+i] * -sinAng + matA[a1*4+i] * cosAng;
}
return matB;
}

function Cross( a, b ) { return [ a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0], 0.0 ]; }
function Dot( a, b ) { return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; }
function Normalize( v ) {
var len = Math.sqrt( v[0] * v[0] + v[1] * v[1] + v[2] * v[2] );
return [ v[0] / len, v[1] / len, v[2] / len ];
}

var Camera = {};
Camera.create = function() {
this.pos = [0, 3.0, 0.0];
this.target = [0, 0, 0];
this.up = [0, 0, 1];
this.fov_y = 90;
this.vp = [800, 600];
this.near = 0.5;
this.far = 100.0;
}
Camera.Perspective = function() {
var fn = this.far + this.near;
var f_n = this.far - this.near;
var r = this.vp[0] / this.vp[1];
var t = 1 / Math.tan( Math.PI * this.fov_y / 360 );
var m = IdentityMat44();
m[0] = t/r; m[1] = 0; m[2] = 0; m[3] = 0;
m[4] = 0; m[5] = t; m[6] = 0; m[7] = 0;
m[8] = 0; m[9] = 0; m[10] = -fn / f_n; m[11] = -1;
m[12] = 0; m[13] = 0; m[14] = -2 * this.far * this.near / f_n; m[15] = 0;
return m;
}
Camera.LookAt = function() {
var mz = Normalize( [ this.pos[0]-this.target[0], this.pos[1]-this.target[1], this.pos[2]-this.target[2] ] );
var mx = Normalize( Cross( this.up, mz ) );
var my = Normalize( Cross( mz, mx ) );
var tx = Dot( mx, this.pos );
var ty = Dot( my, this.pos );
var tz = Dot( [-mz[0], -mz[1], -mz[2]], this.pos );
var m = IdentityMat44();
m[0] = mx[0]; m[1] = my[0]; m[2] = mz[0]; m[3] = 0;
m[4] = mx[1]; m[5] = my[1]; m[6] = mz[1]; m[7] = 0;
m[8] = mx[2]; m[9] = my[2]; m[10] = mz[2]; m[11] = 0;
m[12] = tx; m[13] = ty; m[14] = tz; m[15] = 1;
return m;
}

var ShaderProgram = {};
ShaderProgram.Create = function( shaderList ) {
var shaderObjs = [];
for ( var i_sh = 0; i_sh < shaderList.length; ++ i_sh ) {
var shderObj = this.CompileShader( shaderList[i_sh].source, shaderList[i_sh].stage );
if ( shderObj == 0 )
return 0;
shaderObjs.push( shderObj );
}
var prog = {}
prog.progObj = this.LinkProgram( shaderObjs )
if ( prog.progObj ) {
prog.attribIndex = {};
var noOfAttributes = gl.getProgramParameter( prog.progObj, gl.ACTIVE_ATTRIBUTES );
for ( var i_n = 0; i_n < noOfAttributes; ++ i_n ) {
var name = gl.getActiveAttrib( prog.progObj, i_n ).name;
prog.attribIndex[name] = gl.getAttribLocation( prog.progObj, name );
}
prog.unifomLocation = {};
var noOfUniforms = gl.getProgramParameter( prog.progObj, gl.ACTIVE_UNIFORMS );
for ( var i_n = 0; i_n < noOfUniforms; ++ i_n ) {
var name = gl.getActiveUniform( prog.progObj, i_n ).name;
prog.unifomLocation[name] = gl.getUniformLocation( prog.progObj, name );
}
}
return prog;
}
ShaderProgram.AttributeIndex = function( prog, name ) { return prog.attribIndex[name]; }
ShaderProgram.UniformLocation = function( prog, name ) { return prog.unifomLocation[name]; }
ShaderProgram.Use = function( prog ) { gl.useProgram( prog.progObj ); }
ShaderProgram.SetUniformI1 = function( prog, name, val ) { if(prog.unifomLocation[name]) gl.uniform1i( prog.unifomLocation[name], val ); }
ShaderProgram.SetUniformF1 = function( prog, name, val ) { if(prog.unifomLocation[name]) gl.uniform1f( prog.unifomLocation[name], val ); }
ShaderProgram.SetUniformF2 = function( prog, name, arr ) { if(prog.unifomLocation[name]) gl.uniform2fv( prog.unifomLocation[name], arr ); }
ShaderProgram.SetUniformF3 = function( prog, name, arr ) { if(prog.unifomLocation[name]) gl.uniform3fv( prog.unifomLocation[name], arr ); }
ShaderProgram.SetUniformF4 = function( prog, name, arr ) { if(prog.unifomLocation[name]) gl.uniform4fv( prog.unifomLocation[name], arr ); }
ShaderProgram.SetUniformM33 = function( prog, name, mat ) { if(prog.unifomLocation[name]) gl.uniformMatrix3fv( prog.unifomLocation[name], false, mat ); }
ShaderProgram.SetUniformM44 = function( prog, name, mat ) { if(prog.unifomLocation[name]) gl.uniformMatrix4fv( prog.unifomLocation[name], false, mat ); }
ShaderProgram.CompileShader = function( source, shaderStage ) {
var shaderScript = document.getElementById(source);
if (shaderScript)
source = shaderScript.text;
var shaderObj = gl.createShader( shaderStage );
gl.shaderSource( shaderObj, source );
gl.compileShader( shaderObj );
var status = gl.getShaderParameter( shaderObj, gl.COMPILE_STATUS );
if ( !status ) alert(gl.getShaderInfoLog(shaderObj));
return status ? shaderObj : null;
}
ShaderProgram.LinkProgram = function( shaderObjs ) {
var prog = gl.createProgram();
for ( var i_sh = 0; i_sh < shaderObjs.length; ++ i_sh )
gl.attachShader( prog, shaderObjs[i_sh] );
gl.linkProgram( prog );
status = gl.getProgramParameter( prog, gl.LINK_STATUS );
if ( !status ) alert("Could not initialise shaders");
gl.useProgram( null );
return status ? prog : null;
}

var VertexBuffer = {};
VertexBuffer.Create = function( attributes, indices ) {
var buffer = {};
buffer.buf = [];
buffer.attr = []
for ( var i = 0; i < attributes.length; ++ i ) {
buffer.buf.push( gl.createBuffer() );
buffer.attr.push( { size : attributes[i].attrSize, loc : attributes[i].attrLoc } );
gl.bindBuffer( gl.ARRAY_BUFFER, buffer.buf[i] );
gl.bufferData( gl.ARRAY_BUFFER, new Float32Array( attributes[i].data ), gl.STATIC_DRAW );
}
buffer.inx = gl.createBuffer();
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, buffer.inx );
gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, new Uint16Array( indices ), gl.STATIC_DRAW );
buffer.inxLen = indices.length;
gl.bindBuffer( gl.ARRAY_BUFFER, null );
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, null );
return buffer;
}
VertexBuffer.Draw = function( bufObj ) {
for ( var i = 0; i < bufObj.buf.length; ++ i ) {
gl.bindBuffer( gl.ARRAY_BUFFER, bufObj.buf[i] );
gl.vertexAttribPointer( bufObj.attr[i].loc, bufObj.attr[i].size, gl.FLOAT, false, 0, 0 );
gl.enableVertexAttribArray( bufObj.attr[i].loc );
}
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, bufObj.inx );
gl.drawElements( gl.TRIANGLES, bufObj.inxLen, gl.UNSIGNED_SHORT, 0 );
for ( var i = 0; i < bufObj.buf.length; ++ i )
gl.disableVertexAttribArray( bufObj.attr[i].loc );
gl.bindBuffer( gl.ARRAY_BUFFER, null );
gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, null );
}

initScene();

})();
<script id="draw-shader-vs" type="x-shader/x-vertex">
precision highp float;

attribute vec3 inPos;
attribute vec3 inNV;

varying vec3 viewNV;

uniform mat4 u_projectionMat44;
uniform mat4 u_viewMat44;
uniform mat4 u_modelMat44;

void main()
{
viewNV = mat3(u_viewMat44 * u_modelMat44) * inNV;

vec4 pos = u_viewMat44 * u_modelMat44 * vec4( inPos, 1.0 );
gl_Position = u_projectionMat44 * pos;
}
</script>

<script id="draw-shader-fs" type="x-shader/x-fragment">
precision mediump float;

varying vec3 viewNV;

void main()
{
vec3 N = normalize(viewNV);
vec3 Z = vec3(0.0, 0.0, 1.0);
float NdotZ = dot(N, Z);

vec3 color = vec3(NdotZ, 0.0, 1.0-NdotZ);

gl_FragColor = vec4( color.rgb, 1.0 );
}
</script>

<canvas id="canvas" style="border: none;" width="100%" height="100%"></canvas>

关于glsl - 如何在 GLSL 片段着色器中获得相对于法线的视角?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49583086/

33 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com