- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在毫无问题地运行以下代码:
churn_dmatrix = xgb.DMatrix(data = class_data.iloc[:, :-1], label = class_data.Churn)
params = {'objective' : 'binary:logistic' , 'max_depth' : 4}
cv_results = xgb.cv(dtrain = churn_dmatrix, params = params, nfold = 4, num_boost_round = 1, metrics = 'error', \
as_pandas = True)
print(cv_results)
train-error-mean train-error-std test-error-mean test-error-std
0 0.395833 0.108253 0.375 0.414578
但是,当我将指标更改为“auc”时,我收到一条错误消息:
cv_results = xgb.cv(dtrain = churn_dmatrix, params = params, nfold = 4, num_boost_round = 5, metrics = 'auc', \
as_pandas = True)
---------------------------------------------------------------------------
XGBoostError Traceback (most recent call last)
<ipython-input-102-ea99ef0705b5> in <module>()
----> 1 cv_results = xgb.cv(dtrain = churn_dmatrix, params = params, nfold = 4, num_boost_round = 5, metrics = 'auc', as_pandas = True)
C:\ProgramData\Anaconda3\lib\site-packages\xgboost\training.py in cv(params, dtrain, num_boost_round, nfold, stratified, folds, metrics, obj, feval, maximize, early_stopping_rounds, fpreproc, as_pandas, verbose_eval, show_stdv, seed, callbacks, shuffle)
405 for fold in cvfolds:
406 fold.update(i, obj)
--> 407 res = aggcv([f.eval(i, feval) for f in cvfolds])
408
409 for key, mean, std in res:
C:\ProgramData\Anaconda3\lib\site-packages\xgboost\training.py in <listcomp>(.0)
405 for fold in cvfolds:
406 fold.update(i, obj)
--> 407 res = aggcv([f.eval(i, feval) for f in cvfolds])
408
409 for key, mean, std in res:
C:\ProgramData\Anaconda3\lib\site-packages\xgboost\training.py in eval(self, iteration, feval)
220 def eval(self, iteration, feval):
221 """"Evaluate the CVPack for one iteration."""
--> 222 return self.bst.eval_set(self.watchlist, iteration, feval)
223
224
C:\ProgramData\Anaconda3\lib\site-packages\xgboost\core.py in eval_set(self, evals, iteration, feval)
953 dmats, evnames,
954 c_bst_ulong(len(evals)),
--> 955 ctypes.byref(msg)))
956 res = msg.value.decode()
957 if feval is not None:
C:\ProgramData\Anaconda3\lib\site-packages\xgboost\core.py in _check_call(ret)
128 """
129 if ret != 0:
--> 130 raise XGBoostError(_LIB.XGBGetLastError())
131
132
XGBoostError: b'[14:27:23] src/metric/rank_metric.cc:135: Check failed: !auc_error AUC: the dataset only contains pos or neg samples'
似乎所有的预测都是正面的或负面的。我对么?有什么我可以做的吗?
最佳答案
当 xgboost 尝试拆分为训练/验证并且在其中一个拆分中它没有负样本或正样本(无论是在训练集还是验证集中)时,问题就出现了。
我看到您可以采用 2 种快速方法:
99/1
的乘积)。关于python-3.x - xgboost 错误 : Check failed: ! auc_error AUC:数据集仅包含 pos 或 neg 样本',我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51572501/
在 SQL 中计算 AUC 的最佳方法是什么? 这是我得到的(假设表 T(label, confid) 和 label=0,1): SELECT sum(cumneg * label) * 1e0 /
我正在训练用于图像分类的CNN。由于我的数据集有限,我正在使用转移学习。基本上,我使用的是Google在其再培训示例(https://www.tensorflow.org/tutorials/imag
我正在 sci-kit learn 中构建 MLPClassifier 模型。我使用 gridSearchCV 和 roc_auc 对模型进行评分。训练和考试的平均成绩在 0.76 左右,还不错。 c
我使用我的测试集作为验证集。我使用了与 How to compute Receiving Operating Characteristic (ROC) and AUC in keras? 类似的方法
我分别从 sklearn 的 RandomForestClassifier 和 roc_curve、auc 方法收到不同的 ROC-AUC 分数。 以下代码让我获得了 0.878 的 ROC-AUC(
如何获得具有 fpr 和 tpr 的 AUC 值? Fpr 和 tpr 只是从这些公式中获得的 2 个浮点数: my_fpr = fp / (fp + tn) my_tpr = tp / (tp +
我有一个分类问题,我想在 sklearn 中使用 cross_validate 获取 roc_auc 值。我的代码如下。 from sklearn import datasets iris = dat
我有一个分类问题,我想在 sklearn 中使用 cross_validate 获取 roc_auc 值。我的代码如下。 from sklearn import datasets iris = dat
在 scikit learn 中,您可以使用以下方法计算二元分类器的曲线下面积 roc_auc_score( Y, clf.predict_proba(X)[:,1] ) 我只对误报率小于 0.1 的
我正在尝试为我的 SVM 找到参数,这些参数会给我最好的 AUC。但是我在 sklearn 中找不到 AUC 的任何评分函数。有人有想法吗?这是我的代码: parameters = {"C":
这是一个代表 library(caret) library(dplyr) set.seed(88, sample.kind = "Rounding") mtcars % mutate(am = a
对于二元分类问题,我有一个略微不平衡的数据集,正负比为 0.6。 我最近从这个答案中了解到了 auc 指标:https://stats.stackexchange.com/a/132832/12822
我有一个 Spark 数据框,如下所示: predictions.show(5) +------+----+------+-----------+ | user|item|rating| predi
我正在研究一个分类问题,其评估指标为 ROC AUC。到目前为止,我已经尝试使用具有不同参数的 xgb 。这是我用来采样数据的函数。并且可以找到相关笔记本here (google colab) def
我对 python 中的 scikit-learn 中如何生成阈值感到困惑。对于以下示例,生成了四个阈值,当我将 pred 中的第三个值更改为 0.6 时,阈值数量降至 3。任何人都可以解释为什么会这
假设我有一个如下所示的数据集: word label_numeric 0 active 0 1 adventurous 0 2 aggressive 0 3 aggressi
我有一个分类问题,需要根据给定的数据预测 (0,1) 类。基本上我有一个包含超过 300 个特征(包括预测目标值)和超过 2000 行(样本)的数据集。我应用了不同的分类器,如下所示: 1. Dec
我的目标是找到预测模型来确定是否偿还贷款。我的来源是一个 CSV 文件,其中包含贷款特征以及是否已偿还。我使用 ROC 曲线和 AUC 评估模型的性能 df = pd.read_csv(your_pa
我想知道为什么我们的目标是在最大化准确率时最大化 AUC? 我认为,除了最大化准确性的主要目标之外,AUC 也会自动变大。 最佳答案 我想我们使用 AUC 是因为它解释了我们的方法能够在多大程度上独立
我正在尝试在非常不平衡的数据集上使用 LightGBM 构建分类器。不平衡的比例为 97:3,即: Class 0 0.970691 1 0.029309 我使用的参数和训练代码如下所示。
我是一名优秀的程序员,十分优秀!