gpt4 book ai didi

python - 具有稀疏数据的 tensorflow 训练

转载 作者:行者123 更新时间:2023-12-05 02:55:35 29 4
gpt4 key购买 nike

我想在python的tensorflow中使用稀疏张量进行训练。我找到了很多代码如何做到这一点,但没有一个有效。

这里有一个示例代码来说明我的意思,它会抛出一个错误:

import numpy as np
x_vals = tf.sparse.SparseTensor([[0, 0], [0, 1], [1, 2]], [1, 2, 1], [2, 3])
#x_vals = tf.sparse.to_dense(x_vals) #this line decides, if there is an error
y_vals = np.array([0, 1])

layer_args = lambda : None
layer_args.input_shape = (3,)
layer_args.activation = "sigmoid"
layer_args.use_bias = False

model = tf.keras.models.Sequential(tf.keras.layers.Dense(1, **layer_args.__dict__))

model.compile(loss = "mse")

model.fit(x_vals, y_vals)

错误是:

ValueError: 两个结构没有相同的嵌套结构。

...和一个巨大的堆栈跟踪

最佳答案

好的,我知道它是如何工作的。最简单的解决方案是使用生成器:

from random import shuffle
def data_generator(x_vals, y_vals):
inds = list(range(x_vals.shape[0]))
shuffle(inds)
for ind in inds:
yield (x_vals[ind, :].todense(), y_vals[ind])

然后将该生成器用于拟合中的 x 值:

model.fit(data_generator(x_vals, y_vals))

但是速度很慢。此外,您一次只能训练一个时期,并且有很多您无法使用的 keras 功能。也可能是 tensorflow.keras.utils.Sequence:

class SparseSequence(tf.keras.utils.Sequence):
def __init__(self, x_vals, y_vals, batch_size = 32):
self.x_vals = x_vals
self.y_vals = y_vals
self.inds = list(range(x_vals.shape[0]))
shuffle(self.inds)
self.batch_size = batch_size
def __getitem__(self, item):
from_ind = self.batch_size * item
to_ind = self.batch_size * (item + 1)
return (self.x_vals[self.inds[from_ind:to_ind], :].todense(),
y_vals[self.inds[from_ind:to_ind]])
def on_epoch_end(self):
shuffle(self.inds)
def __len__(self):
return math.ceil(self.x_vals.shape[0] / self.batch_size)

然后在拟合函数中使用它:

model.fit(SparseSequence(x_vals, y_vals))

请记住,首先需要将数据转换为 scipy csr 稀疏矩阵,否则代码将无法运行。还请记住不要在 Model.fit() 中使用“y”关键字。

关于python - 具有稀疏数据的 tensorflow 训练,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61164935/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com