- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在处理一个多类、高度不平衡的分类问题。我使用随机森林作为基础分类器。
我必须在考虑多个标准(指标:精度、召回 conf_matrix、roc_auc
)的情况下给出模型性能报告。
模型火车:
rf = RandomForestClassifier(()
rf.fit(train_X, train_y)
为了获得准确率/召回率和混淆矩阵,我会这样做:
pred = rf.predict(test_X)
precision = metrics.precision_score(y_test, pred)
recall = metrics.recall_score(y_test, pred)
f1_score = metrics.f1_score(y_test, pred)
confusion_matrix = metrics.confusion_matrix(y_test, pred)
很好,但是计算 roc_auc
需要类的预测概率,而不是类标签。为此,我必须进一步这样做:
y_prob = rf.predict_proba(test_X)
roc_auc = metrics.roc_auc_score(y_test, y_prob)
但是我在这里担心 rf.predict()
首先产生的结果可能与 rf.predict_proba()
不一致,所以 roc_auc
我报告的分数。我知道多次调用 predict
会产生完全相同的结果,但我担心 predict
然后 predict_proba
可能会产生稍微不同的结果,使得不宜与上述指标一起讨论。
如果是这样,有没有办法控制它,确保 predict()
用来决定预测标签的类概率在我调用 predict_proab 时完全相同
?
最佳答案
predict_proba()
和 predict()
彼此一致。事实上,predict
在内部使用 predict_proba
可以看出here in the source code
关于python - 随机森林 : predict vs predict_proba,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/66816050/
假设我的标记数据有两个类 1 和 0。当我在测试集上运行 Predict_proba 时,它返回一个包含两列的数组。哪一列对应哪个类? 最佳答案 第 0 列对应于类 0,第 1 列对应于类 1。 关于
只是一个简单的问题,如果我想将对象分类为 0 或 1,但我希望模型返回一个“可能性”概率,例如,如果一个对象是 0.7,这意味着它有 0.7 的机会进入第 1 类,我是做回归还是坚持使用分类器并使用
我想通过交叉验证从逻辑回归模型预测概率。我知道您可以获得交叉验证分数,但是否可以从 predict_proba 返回值而不是分数? # imports from sklearn.linear_mode
我在我的数据集上训练了一个 RandomForestClassifier,可以从文本正文中预测 8 个不同的主题。对于给定示例,数据集如下所示 X_train = [[0,0,0,0,0,1,0,0,
我正在使用 Python 的 sklearn 对文本进行分类。 我调用函数 predict_proba,它看起来像这样: [[ 6.74918834e-53 1.59981248e-51 2
我正在使用 scikit-learn 通过逻辑回归来实现分类。使用 predict() 函数预测类标签,而使用 predict_proba() 函数打印预测概率。 下面粘贴了代码片段: # Parti
我正在处理一个多类、高度不平衡的分类问题。我使用随机森林作为基础分类器。 我必须在考虑多个标准(指标:精度、召回 conf_matrix、roc_auc)的情况下给出模型性能报告。 模型火车: rf
我使用 Scikit-learn 和 XGBoost 在同一数据上训练了 2 个梯度提升模型。 Scikit-learn 模型 GradientBoostingClassifier( n_es
scikit-learn 的 DecisionTreeClassifier 支持通过 predict_proba() 函数预测每个类的概率。 DecisionTreeRegressor 中不存在这一点
所以我使用 sci-kit learns RandomForestClassifier 将天文来源的数据分为三类。为了让我的问题更简单,我在测试集中仅使用了两个来源,并获得了 predict_prob
我正在使用 sklearn 库来训练和测试我的数据。 targetDataCsv = pd.read_csv("target.csv","rt")) testNormalizedCsv = csv.
我试图通过调用 Keras 模型的 predict_proba() 生成类(class)分数,但似乎没有这个函数!它是否因为我在谷歌中看到一些例子而被弃用?我正在使用 Keras 2.2.2。 最佳答
运行Python 3.7.3 我制作了一个简单的 GMM 并将其拟合到一些数据。使用predict_proba方法,返回的是1和0,而不是属于每个高斯的输入的概率。 我最初在更大的数据集上尝试过这个,
在docs , predict_proba(self, x, batch_size=32, verbose=1) 是 Generates class probability predictions f
我正在尝试使用LinearSVC 分类器 更新:添加了导入 import nltk from nltk.tokenize import word_tokenize from nltk.classify
这是来自 How to know what classes are represented in return array from predict_proba in Scikit-learn 的后续
我有许多类和对应的特征向量,当我运行 predict_proba() 时,我会得到这个: classes = ['one','two','three','one','three'] feature =
我正在尝试了解如何 sklearn's MLP Classifier检索其 predict_proba 函数的结果。 该网站仅列出: Probability estimates 还有很多其他的,例如
predict_proba 返回神经网络中的误差 我在这个链接上看到了例子 https://machinelearningmastery.com/how-to-make-classification-
我训练了一个简单的随机森林分类器,然后当我使用相同的测试输入测试预测时: rf_clf.predict([[50,0,500,0,20,0,250000,1.5,110,0,0,2]]) rf_clf
我是一名优秀的程序员,十分优秀!