gpt4 book ai didi

machine-learning - 什么时候应该运行 wandb.watch 以便权重和偏差正确跟踪参数和梯度?

转载 作者:行者123 更新时间:2023-12-05 02:39:24 25 4
gpt4 key购买 nike

我正在试用 wandb 库并运行 wandb.watch 但这似乎不适用于我的代码。它不应该太复杂,所以我很困惑为什么它不起作用。

代码:

"""
https://docs.wandb.ai/guides/track/advanced/distributed-training

import wandb

# 1. Start a new run
wandb.init(project='playground', entity='brando')

# 2. Save model inputs and hyperparameters
config = wandb.config
config.learning_rate = 0.01

# 3. Log gradients and model parameters
wandb.watch(model)
for batch_idx, (data, target) in enumerate(train_loader):
...
if batch_idx % args.log_interval == 0:
# 4. Log metrics to visualize performance
wandb.log({"loss": loss})


Notes:
- call wandb.init and wandb.log only from the leader process
"""

from argparse import Namespace
from pathlib import Path
from typing import Union

import torch
from torch import nn
from torch.nn.functional import mse_loss
from torch.optim import Optimizer

import uutils
from uutils.torch_uu import r2_score_from_torch
from uutils.torch_uu.distributed import is_lead_worker
from uutils.torch_uu.models import get_simple_model
from uutils.torch_uu.tensorboard import log_2_tb_supervisedlearning


import wandb

def log_2_wandb_nice(it, loss, inputs, outputs, captions):
wandb.log({"loss": loss, "epoch": it,
"inputs": wandb.Image(inputs),
"logits": wandb.Histogram(outputs),
"captions": wandb.HTML(captions)})

def log_2_wandb(**metrics):
""" Log to wandb """
new_metrics: dict = {}
for key, value in metrics.items():
key = str(key).strip('_')
new_metrics[key] = value
wandb.log(new_metrics)


def log_train_val_stats(args: Namespace,
it: int,

train_loss: float,
train_acc: float,

valid,

log_freq: int = 10,
ckpt_freq: int = 50,
force_log: bool = False, # e.g. at the final it/epoch

save_val_ckpt: bool = False,
log_to_tb: bool = False,
log_to_wandb: bool = False
):
"""

log train and val stats.

Note: Unlike save ckpt, this one does need it to be passed explicitly (so it can save it in the stats collector).
"""
from uutils.torch_uu.tensorboard import log_2_tb
from matplotlib import pyplot as plt

# - is it epoch or iteration
it_or_epoch: str = 'epoch_num' if args.training_mode == 'epochs' else 'it'
# if its
total_its: int = args.num_empochs if args.training_mode == 'epochs' else args.num_its

print(f'-- {it == total_its - 1}')
print(f'-- {it}')
print(f'-- {total_its}')
if (it % log_freq == 0 or is_lead_worker(args.rank) or it == total_its - 1 or force_log) and is_lead_worker(args.rank):
print('inside log')
# - get eval stats
val_loss, val_acc = valid(args, args.mdl, save_val_ckpt=save_val_ckpt)

# - print
args.logger.log('\n')
args.logger.log(f"{it_or_epoch}={it}: {train_loss=}, {train_acc=}")
args.logger.log(f"{it_or_epoch}={it}: {val_loss=}, {val_acc=}")

# - record into stats collector
args.logger.record_train_stats_stats_collector(it, train_loss, train_acc)
args.logger.record_val_stats_stats_collector(it, val_loss, val_acc)
args.logger.save_experiment_stats_to_json_file()
fig = args.logger.save_current_plots_and_stats()

# - log to wandb
if log_to_wandb:
# if it == 0:
# # -- todo why isn't this working?
# wandb.watch(args.mdl)
# print('watching model')
# log_2_wandb(train_loss=train_loss, train_acc=train_acc)
print('inside wandb log')
wandb.log(data={'train loss': train_loss, 'train acc': train_acc, 'val loss': val_loss, 'val acc': val_acc}, step=it)
wandb.log(data={'it': it}, step=it)
if it == total_its - 1:
print(f'logging fig at {it=}')
wandb.log(data={'fig': fig}, step=it)
plt.close('all')

# - log to tensorboard
if log_to_tb:
log_2_tb_supervisedlearning(args.tb, args, it, train_loss, train_acc, 'train')
log_2_tb_supervisedlearning(args.tb, args, it, train_loss, train_acc, 'val')
# log_2_tb(args, it, val_loss, val_acc, 'train')
# log_2_tb(args, it, val_loss, val_acc, 'val')

# - log ckpt
if (it % ckpt_freq == 0 or it == total_its - 1 or force_log) and is_lead_worker(args.rank):
save_ckpt(args, args.mdl, args.optimizer)


def save_ckpt(args: Namespace, mdl: nn.Module, optimizer: torch.optim.Optimizer,
dirname: Union[None, Path] = None, ckpt_name: str = 'ckpt.pt'):
"""
Saves checkpoint for any worker.
Intended use is to save by worker that got a val loss that improved.


"""
import dill

dirname = args.log_root if (dirname is None) else dirname
# - pickle ckpt
assert uutils.xor(args.training_mode == 'epochs', args.training_mode == 'iterations')
pickable_args = uutils.make_args_pickable(args)
torch.save({'state_dict': mdl.state_dict(),
'epoch_num': args.epoch_num,
'it': args.it,
'optimizer': optimizer.state_dict(),
'args': pickable_args,
'mdl': mdl},
pickle_module=dill,
f=dirname / ckpt_name) # f'mdl_{epoch_num:03}.pt'


def get_args() -> Namespace:
args = uutils.parse_args_synth_agent()
# we can place model here...
args = uutils.setup_args_for_experiment(args)
return args


def valid_for_test(args: Namespace, mdl: nn.Module, save_val_ckpt: bool = False):
import torch

for t in range(1):
x = torch.randn(args.batch_size, 5)
y = (x ** 2 + x + 1).sum(dim=1)

y_pred = mdl(x).squeeze(dim=1)
val_loss, val_acc = mse_loss(y_pred, y), r2_score_from_torch(y_true=y, y_pred=y_pred)

if val_loss.item() < args.best_val_loss and save_val_ckpt:
args.best_val_loss = val_loss.item()
save_ckpt(args, args.mdl, args.optimizer, ckpt_name='ckpt_best_val.pt')
return val_loss, val_acc


def train_for_test(args: Namespace, mdl: nn.Module, optimizer: Optimizer, scheduler=None):
# wandb.watch(args.mdl)
for it in range(args.num_its):
x = torch.randn(args.batch_size, 5)
y = (x ** 2 + x + 1).sum(dim=1)

y_pred = mdl(x).squeeze(dim=1)
train_loss, train_acc = mse_loss(y_pred, y), r2_score_from_torch(y_true=y, y_pred=y_pred)

optimizer.zero_grad()
train_loss.backward() # each process synchronizes it's gradients in the backward pass
optimizer.step() # the right update is done since all procs have the right synced grads
scheduler.step()

log_train_val_stats(args, it, train_loss, train_acc, valid_for_test,
log_freq=2, ckpt_freq=10,
save_val_ckpt=True, log_to_tb=True, log_to_wandb=True)

return train_loss, train_acc


def debug_test():
args: Namespace = get_args()
args.num_its = 12

# - get mdl, opt, scheduler, etc
args.mdl = get_simple_model(in_features=5, hidden_features=20, out_features=1, num_layer=2)
wandb.watch(args.mdl)
args.optimizer = torch.optim.Adam(args.mdl.parameters(), lr=1e-1)
args.scheduler = torch.optim.lr_scheduler.ExponentialLR(args.optimizer, gamma=0.999, verbose=False)

# - train
train_loss, train_acc = train_for_test(args, args.mdl, args.optimizer, args.scheduler)
print(f'{train_loss=}, {train_loss=}')

# - eval
val_loss, val_acc = valid_for_test(args, args.mdl)

print(f'{val_loss=}, {val_acc=}')

# - make sure wandb closes properly
if args.log_to_wandb:
wandb.finish()


if __name__ == '__main__':
import os

# print(os.environ['WANDB_API_KEY'])
import time
start = time.time()
debug_test()
duration_secs = time.time() - start
print(f"\nSuccess, time passed: hours:{duration_secs / (60 ** 2)}, minutes={duration_secs / 60}, seconds={duration_secs}")
print('Done!\a')

github 中的代码:https://github.com/brando90/ultimate-utils/blob/master/tutorials_for_myself/my_wandb/my_wandb_basic1.py

样本运行:https://wandb.ai/brando/playground/runs/wpupxvg1

交叉发布:https://community.wandb.ai/t/when-is-one-supposed-to-run-wandb-watch-so-that-weights-and-biases-tracks-params-and-gradients-prope/518

最佳答案

交叉发布 an answer by charlesfrye in the wandb community forum :

您可能会在这里遇到两件事 -- 无法确认,因为您的代码依赖于 ultimate-utils 包。

  1. wandb.watch 只会在您调用 wandb.log 后开始工作 一个触及被监视的 Module< 的反向传递之后 ( docs ).
  2. 记录梯度/参数的频率由 log_freq 参数控制。如果记录调用的次数小于 log_freq 的值,则不会记录任何信息。这是 a short colab重现此行为。

此外,如果您需要参数和梯度,则需要将 log kwarg 设置为 "all"。默认情况下,我们只记录梯度。

关于machine-learning - 什么时候应该运行 wandb.watch 以便权重和偏差正确跟踪参数和梯度?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/69145174/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com