gpt4 book ai didi

python - 使用 python 数据表按组创建行号

转载 作者:行者123 更新时间:2023-12-05 02:38:23 25 4
gpt4 key购买 nike

如果我有这样的 python 数据表:

from datatable import f, dt
data = dt.Frame(grp=["a","a","b","b","b","b","c"], value=[2,3,1,2,5,9,2])

如何按组创建一个具有行号的新列?。也就是说,什么是 R data.table 的等价物

data[, id:=1:.N, by=.(grp)]

这可行,但看起来完全荒谬

data['id'] = np.concatenate(
[np.arange(x)
for x in data[:,dt.count(), dt.by(f.grp)]['count'].to_numpy()])

期望的输出:

   | grp    value     id
| str32 int32 int64
-- + ----- ----- -----
0 | a 2 0
1 | a 3 1
2 | b 1 0
3 | b 2 1
4 | b 5 2
5 | b 9 3
6 | c 2 0

最佳答案

更新:

数据表现在有一个 cumcount开发中的功能:

data[:, [f.value, dt.cumcount()], 'grp']

| grp value C0
| str32 int32 int64
-- + ----- ----- -----
0 | a 2 0
1 | a 3 1
2 | b 1 0
3 | b 2 1
4 | b 5 2
5 | b 9 3
6 | c 2 0
[7 rows x 3 columns]

旧答案:

datatable没有累计计数函数,实际上目前任何聚合都没有累计函数。

一种可能提高速度的方法是使用更快的 numpy 迭代,其中 for 循环在 C 中完成,并且效率更高。代码来自here并为此目的进行了修改:

from datatable import dt, f, by
import numpy as np

In [244]: def create_ranges(indices):
...: cum_length = indices.cumsum()
...: ids = np.ones(cum_length[-1], dtype=int)
...: ids[0] = 0
...: ids[cum_length[:-1]] = -1 * indices[:-1] + 1
...: return ids.cumsum()


counts = data[:, dt.count(), by('grp', add_columns=False)].to_numpy().ravel()
data[:, f[:].extend({"counts" : create_ranges(counts)})]

| grp value counts
| str32 int32 int64
-- + ----- ----- ------
0 | a 2 0
1 | a 3 1
2 | b 1 0
3 | b 2 1
4 | b 5 2
5 | b 9 3
6 | c 2 0
[7 rows x 3 columns]

create_ranges 函数很棒(建立在 cumsum 上的逻辑很好),并且随着数组大小的增加真正发挥作用。

当然这有它的缺点;你正在走出数据表进入 numpy 领域,然后回到数据表;另一方面是我寄希望于这样一个事实,即这些组是按词汇排序的;如果数据未排序(并且必须在分组列上排序),这将不起作用。

初步测试显示速度有显着提升;同样,它的范围有限,如果将其纳入数据表库,将会更容易/更好。

如果你擅长C++,你可以考虑把这个函数贡献给这个库;我和其他很多人都会感谢您的努力。

您可以查看 pypolars,看看它是否对您的用例有帮助。从 h2o 基准测试来看,它看起来像一个非常快的工具。

关于python - 使用 python 数据表按组创建行号,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/69622734/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com