gpt4 book ai didi

r - Dplyr:清洁双管姓氏

转载 作者:行者123 更新时间:2023-12-05 02:37:05 25 4
gpt4 key购买 nike

我有一个 data.frame 名称,如下所示,其中有一些姓氏的样本,后跟一个首字母(例如 Smith S 或 Lopez-Garcia M):

df<-data.frame(names=c("Adu-Amankwah E",
"Smith Dawson E",
"Lopez-Garcia M",
"Lopez Garcia MA",
"Garcia MAC",
"Lopez Garcia MA",
"Garcia MAC"))

我想把那些双管齐下的姓氏全部拉出来,稍微清理一下:

  1. 找出带有连字符 (-) 或两个姓氏(例如 Lopez Garcia)的任何一个。
  2. 我需要用 Lopez-加西亚 M。而 Smith Dawson E 应该是 Smith-Dawson E.

输出看起来像:

df<-data.frame(names=c("Adu-Amankwah E",
"Smith-Dawson E",
"Lopez-Garcia M",
"Lopez-Garcia M",
"Lopez-Garcia M",
"Lopez-Garcia M",
"Lopez-Garcia M"))

最佳答案

正如我在 my comments 中提到的,这里的挑战与其说是解析 character 字符串,不如说是将逻辑定义为

  • 在代表性标签 ("Lopez-Garcia M "); 仍然
  • 避免将不同名称(如 “Andy Garcia”)的相似变体(如 “Garcia A”)混为一谈。

因此,您最好的方法可能是为名称的已知变体定义一个映射 表。

文字映射

文字映射涉及在其真正代表的名称旁边键入每个已知变体。

mapping_lit <- data.frame(
True_Name = c("Adu-Amankwah E", "Smith-Dawson E", "Lopez-Garcia M", "Lopez-Garcia M", "Lopez-Garcia M"),
Variant = c("Adu-Amankwah E", "Smith Dawson E", "Lopez-Garcia M", "Lopez Garcia MA", "Garcia MAC")
)

mapping_lit
#> True_Name Variant
#> 1 Adu-Amankwah E Adu-Amankwah E
#> 2 Smith-Dawson E Smith Dawson E
#> 3 Lopez-Garcia M Lopez-Garcia M
#> 4 Lopez-Garcia M Lopez Garcia MA
#> 5 Lopez-Garcia M Garcia MAC

一旦您有了映射,一个简单的dplyr::*_join()应该可以解决问题

library(dplyr)

# The LEFT JOIN preserves any names without matches, so you can handle them as you wish.
left_join(
df,
mapping_lit,
by = c("names" = "Variant")
)

结果如下:

            names      True_Name
1 Adu-Amankwah E Adu-Amankwah E
2 Smith Dawson E Smith-Dawson E
3 Lopez-Garcia M Lopez-Garcia M
4 Lopez Garcia MA Lopez-Garcia M
5 Garcia MAC Lopez-Garcia M
6 Lopez Garcia MA Lopez-Garcia M
7 Garcia MAC Lopez-Garcia M

正则表达式映射

如果您对 regular expressions 足够熟练,您可以只定义一个正则表达式来表示每个 True_Name 上的所有变体:

mapping_rgx <- data.frame(
True_Name = c("Adu-Amankwah E", "Smith-Dawson E", "Lopez-Garcia M"),
Pattern = c("^(Adu[- ]?)?Amankwah( E)?$", "^(Smith[- ]?)?Dawson( E)?$", "^(Lopez[- ]?)?Garcia( M(AC?)?)?$")
)

mapping_rgx
#> True_Name Pattern
#> 1 Adu-Amankwah E ^(Adu[- ]?)?Amankwah( E)?$
#> 2 Smith-Dawson E ^(Smith[- ]?)?Dawson( E)?$
#> 3 Lopez-Garcia M ^(Lopez[- ]?)?Garcia( M(AC?)?)?$

有了这个映射后,您将需要一个 fuzzyjoin::regex_*_join()匹配变体

library(fuzzyjoin)

# The LEFT JOIN preserves any names without matches, so you can handle them as you wish.
regex_left_join(
df,
mapping_rgx,
by = c("names" = "Pattern"),
# Account for typos in capitalization.
ignore_case = TRUE
)

结果如下:

            names      True_Name                          Pattern
1 Adu-Amankwah E Adu-Amankwah E (Adu[- ]?)?Amankwah( E)?
2 Smith Dawson E Smith-Dawson E (Smith[- ]?)?Dawson( E)?
3 Lopez-Garcia M Lopez-Garcia M ^(Lopez[- ]?)?Garcia( M(AC?)?)?$
4 Lopez Garcia MA Lopez-Garcia M ^(Lopez[- ]?)?Garcia( M(AC?)?)?$
5 Garcia MAC Lopez-Garcia M ^(Lopez[- ]?)?Garcia( M(AC?)?)?$
6 Lopez Garcia MA Lopez-Garcia M ^(Lopez[- ]?)?Garcia( M(AC?)?)?$
7 Garcia MAC Lopez-Garcia M ^(Lopez[- ]?)?Garcia( M(AC?)?)?$

警告

我也是commented ,我可能不会推荐 stringdist在这种情况下的方法。每个名字不仅在拼写上不同,而且在结构上也不同。两个不同人的两个结构相似的条目完全有可能

<表类="s-表"><头>变体真名<正文>加西亚A安迪加西亚加西亚麦克洛佩兹-加西亚中号洛佩兹-加西亚中号洛佩兹-加西亚中号

相同名称上的两个不同结构变体相比,字符串距离更短:

# Run the full gamut of methods for 'stringdist::stringdist()'.
methods <- c(
"osa", "lv", "dl", "hamming", "lcs", "qgram",
"cosine", "jaccard", "jw", "soundex"
)


# Display string distances for variants of the same and of different names:
rbind(
# Compare different names.
sapply(X = methods, FUN = function(x) {stringdist::stringdist(
a = "Garcia MAC", b = "Garcia A",
method = x
)}),
# Compare variations on the same name.
sapply(X = methods, FUN = function(x) {stringdist::stringdist(
a = "Garcia MAC", b = "Lopez-Garcia M",
method = x
)})
)

#> osa lv dl hamming lcs qgram cosine jaccard jw soundex
#> [1,] 2 2 2 Inf 2 2 0.08712907 0.2222222 0.06666667 1
#> [2,] 8 8 8 Inf 8 8 0.27831216 0.5333333 0.20952381 1

关于r - Dplyr:清洁双管姓氏,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/70083962/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com