gpt4 book ai didi

python - 如何解决 : InvalidArgumentError: Graph execution error?

转载 作者:行者123 更新时间:2023-12-05 02:31:38 29 4
gpt4 key购买 nike

大家好,我是计算机视觉和分类方面的专家,我正在尝试使用带有 tensorflow 和 keras 的 cnn 方法来训练模型,但我一直收到此代码下方的错误,任何人都可以帮助我或至少给我一个和平的建议?

model = keras.models.Sequential([
keras.layers.Conv2D(filters=16, kernel_size=(3,3), activation='relu',input_shape=(IMG_HEIGHT,IMG_WIDTH,channels)),
keras.layers.Conv2D(filters=32, kernel_size=(3,3), activation='relu'),
keras.layers.MaxPool2D(pool_size=(2,2)),
keras.layers.BatchNormalization(axis=-1),

keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation='relu'),
keras.layers.Conv2D(filters=128, kernel_size=(3,3), activation='relu'),
keras.layers.MaxPool2D(pool_size=(2,2)),
keras.layers.BatchNormalization(axis=-1),

keras.layers.Flatten(),
keras.layers.Dense(512,activation='relu'),
keras.layers.BatchNormalization() ,
keras.layers.Dropout(rate=0.5),

keras.layers.Dense(3,activation='softmax')

])

learning_rate = 0.001
epochs=30
opt= Adam(learning_rate=learning_rate , decay=learning_rate/(epochs*0.5))
model.compile(loss='sparse_categorical_crossentropy',optimizer=opt,metrics=['accuracy'])


aug = ImageDataGenerator(
rotation_range=10,
zoom_range=0.15,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.15,
horizontal_flip= False,
vertical_flip= False,
fill_mode="nearest"
)


history = model.fit(aug.flow(X_train, y_train,batch_size=32), epochs=epochs,validation_data=(X_val,y_val) )

InvalidArgumentError Traceback (most recent call last)
<ipython-input-15-15df12cd6846> in <module>()
11
12
---> 13 history = model.fit(aug.flow(X_train, y_train,batch_size=32), epochs=epochs,validation_data=(X_val,y_val) )

1 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
53 ctx.ensure_initialized()
54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 55 inputs, attrs, num_outputs)
56 except core._NotOkStatusException as e:
57 if name is not None:

InvalidArgumentError: Graph execution error:

Detected at node 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits' defined at (most recent call last):
File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)

最佳答案

您只需确保您的标签从 0 到 2 从零开始,因为您的输出层有 3 个节点和一个 softmax 激活函数,并且您使用的是 sparse_categorical_crossentropy。这是一个工作示例:

import tensorflow as tf

model = tf.keras.Sequential([
tf.keras.layers.Conv2D(filters=16, kernel_size=(3,3), activation='relu',input_shape=(256, 256, 3)),
tf.keras.layers.Conv2D(filters=32, kernel_size=(3,3), activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=(2,2)),
tf.keras.layers.BatchNormalization(axis=-1),

tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation='relu'),
tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=(2,2)),
tf.keras.layers.BatchNormalization(axis=-1),

tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512,activation='relu'),
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Dropout(rate=0.5),

tf.keras.layers.Dense(3,activation='softmax')

])

learning_rate = 0.001
epochs=2
opt= tf.keras.optimizers.Adam(learning_rate=learning_rate , decay=learning_rate/(epochs*0.5))
model.compile(loss='sparse_categorical_crossentropy',optimizer=opt,metrics=['accuracy'])


aug = tf.keras.preprocessing.image.ImageDataGenerator(
rotation_range=10,
zoom_range=0.15,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.15,
horizontal_flip= False,
vertical_flip= False,
fill_mode="nearest"
)


X_train = tf.random.normal((50, 256, 256, 3))
y_train = tf.random.uniform((50, ), maxval=3, dtype=tf.int32)
history = model.fit(aug.flow(X_train, y_train, batch_size=2), epochs=epochs)

使用虚拟数据作为真实数据的方向。

关于python - 如何解决 : InvalidArgumentError: Graph execution error?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/71493889/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com