gpt4 book ai didi

python - 使用最小二乘法进行颜色校正

转载 作者:行者123 更新时间:2023-12-05 02:25:47 24 4
gpt4 key购买 nike

我尝试过使用最小二乘法对图像进行色彩校正。我不明白为什么它不起作用,这应该是颜色校准的标准方法。

首先,我以 CR3 格式提取上图,将其转换为 RGB 空间,然后使用 OpenCV boundingRect 和 inRange 函数裁剪出四个色 block ,将这四个色 block 保存在一个名为 coloursRect 的数组中。使用 vstack 以便存储每个像素颜色的数组从 3d 转换为 2d。因此,例如,colour0 存储“红色补丁”的每个像素的 RGB 值。

colour0 = np.vstack(coloursRect[0])
colour1 = np.vstack(coloursRect[1])
colour2 = np.vstack(coloursRect[2])
colour3 = np.vstack(coloursRect[3])

lstsq_a = np.array(np.vstack((colour0,colour1,colour2,colour3)))

然后我在 RGB 中声明原始引用颜色。

r_ref = [240,0,22]
y_ref = [252,222,10]
g_ref = [30,187,22]
b_ref = [26,0,165]
ref_patches = [r_ref,y_ref,g_ref, b_ref]

每个引用颜色的数量根据实际图像色 block 中的像素数量乘以,例如,r_ref 乘以 colour0 数组的长度。 (我知道这是一种糟糕的数据处理方式,但理论上应该可行)

lstsq_b_0to255 = np.array(np.vstack(([ref_patches[0]]*colour0.shape[0],[ref_patches[1]]*colour1.shape[0],[ref_patches[2]]*colour2.shape[0],[ref_patches[3]]*colour3.shape[0]))) 

计算最小二乘法,并与图像相乘。

lstsq_x_0to255 = np.linalg.lstsq(lstsq_a, lstsq_b_0to255)[0]


img_shape = img.shape
img_s = img.reshape((-1, 3))
img_corr_s = img_s @ lstsq_x_0to255
img_corr = img_corr_s.reshape(img_shape).astype('uint8')

但是这种颜色校正方法不起作用并且图像中的颜色不正确。我可以知道是什么问题吗?

编辑:使用 RGB 而不是 HSV 作为引用颜色

最佳答案

忽略图像 ICC 配置文件未在此处正确解码的事实,这是给定引用 RGB 值并使用 Colour 的预期结果:

import colour
import numpy as np


# Reference values a likely non-linear 8-bit sRGB values.
# "colour.cctf_decoding" uses the sRGB EOTF by default.
REFERENCE_RGB = colour.cctf_decoding(
np.array(
[
[240, 0, 22],
[252, 222, 10],
[30, 187, 22],
[26, 0, 165],
]
)
/ 255
)

colour.plotting.plot_multi_colour_swatches(colour.cctf_encoding(REFERENCE_RGB))

IMAGE = colour.cctf_decoding(colour.read_image("/Users/kelsolaar/Downloads/EKcv1.jpeg"))

# Measured test values, the image is not properly decoded as it has a very specific ICC profile.
TEST_RGB = np.array(
[
[0.578, 0.0, 0.144],
[0.895, 0.460, 0.0],
[0.0, 0.183, 0.074],
[0.067, 0.010, 0.070],
]
)

colour.plotting.plot_image(
colour.cctf_encoding(colour.colour_correction(IMAGE, REFERENCE_RGB, TEST_RGB))
)

Reference Samples Colour Corrected

in this module可用的主要功能如下:

def least_square_mapping_MoorePenrose(y: ArrayLike, x: ArrayLike) -> NDArray:
"""
Compute the *least-squares* mapping from dependent variable :math:`y` to
independent variable :math:`x` using *Moore-Penrose* inverse.

Parameters
----------
y
Dependent and already known :math:`y` variable.
x
Independent :math:`x` variable(s) values corresponding with :math:`y`
variable.

Returns
-------
:class:`numpy.ndarray`
*Least-squares* mapping.

References
----------
:cite:`Finlayson2015`

Examples
--------
>>> prng = np.random.RandomState(2)
>>> y = prng.random_sample((24, 3))
>>> x = y + (prng.random_sample((24, 3)) - 0.5) * 0.5
>>> least_square_mapping_MoorePenrose(y, x) # doctest: +ELLIPSIS
array([[ 1.0526376..., 0.1378078..., -0.2276339...],
[ 0.0739584..., 1.0293994..., -0.1060115...],
[ 0.0572550..., -0.2052633..., 1.1015194...]])
"""

y = np.atleast_2d(y)
x = np.atleast_2d(x)

return np.dot(np.transpose(x), np.linalg.pinv(np.transpose(y)))


def matrix_augmented_Cheung2004(
RGB: ArrayLike,
terms: Literal[3, 5, 7, 8, 10, 11, 14, 16, 17, 19, 20, 22] = 3,
) -> NDArray:
"""
Perform polynomial expansion of given *RGB* colourspace array using
*Cheung et al. (2004)* method.

Parameters
----------
RGB
*RGB* colourspace array to expand.
terms
Number of terms of the expanded polynomial.

Returns
-------
:class:`numpy.ndarray`
Expanded *RGB* colourspace array.

Notes
-----
- This definition combines the augmented matrices given in
:cite:`Cheung2004` and :cite:`Westland2004`.

References
----------
:cite:`Cheung2004`, :cite:`Westland2004`

Examples
--------
>>> RGB = np.array([0.17224810, 0.09170660, 0.06416938])
>>> matrix_augmented_Cheung2004(RGB, terms=5) # doctest: +ELLIPSIS
array([ 0.1722481..., 0.0917066..., 0.0641693..., 0.0010136..., 1...])
"""

RGB = as_float_array(RGB)

R, G, B = tsplit(RGB)
tail = ones(R.shape)

existing_terms = np.array([3, 5, 7, 8, 10, 11, 14, 16, 17, 19, 20, 22])
closest_terms = as_int(closest(existing_terms, terms))
if closest_terms != terms:
raise ValueError(
f'"Cheung et al. (2004)" method does not define an augmented '
f"matrix with {terms} terms, closest augmented matrix has "
f"{closest_terms} terms!"
)

if terms == 3:
return RGB
elif terms == 5:
return tstack(
[
R,
G,
B,
R * G * B,
tail,
]
)
elif terms == 7:
return tstack(
[
R,
G,
B,
R * G,
R * B,
G * B,
tail,
]
)
elif terms == 8:
return tstack(
[
R,
G,
B,
R * G,
R * B,
G * B,
R * G * B,
tail,
]
)
elif terms == 10:
return tstack(
[
R,
G,
B,
R * G,
R * B,
G * B,
R**2,
G**2,
B**2,
tail,
]
)
elif terms == 11:
return tstack(
[
R,
G,
B,
R * G,
R * B,
G * B,
R**2,
G**2,
B**2,
R * G * B,
tail,
]
)
elif terms == 14:
return tstack(
[
R,
G,
B,
R * G,
R * B,
G * B,
R**2,
G**2,
B**2,
R * G * B,
R**3,
G**3,
B**3,
tail,
]
)
elif terms == 16:
return tstack(
[
R,
G,
B,
R * G,
R * B,
G * B,
R**2,
G**2,
B**2,
R * G * B,
R**2 * G,
G**2 * B,
B**2 * R,
R**3,
G**3,
B**3,
]
)
elif terms == 17:
return tstack(
[
R,
G,
B,
R * G,
R * B,
G * B,
R**2,
G**2,
B**2,
R * G * B,
R**2 * G,
G**2 * B,
B**2 * R,
R**3,
G**3,
B**3,
tail,
]
)
elif terms == 19:
return tstack(
[
R,
G,
B,
R * G,
R * B,
G * B,
R**2,
G**2,
B**2,
R * G * B,
R**2 * G,
G**2 * B,
B**2 * R,
R**2 * B,
G**2 * R,
B**2 * G,
R**3,
G**3,
B**3,
]
)
elif terms == 20:
return tstack(
[
R,
G,
B,
R * G,
R * B,
G * B,
R**2,
G**2,
B**2,
R * G * B,
R**2 * G,
G**2 * B,
B**2 * R,
R**2 * B,
G**2 * R,
B**2 * G,
R**3,
G**3,
B**3,
tail,
]
)
elif terms == 22:
return tstack(
[
R,
G,
B,
R * G,
R * B,
G * B,
R**2,
G**2,
B**2,
R * G * B,
R**2 * G,
G**2 * B,
B**2 * R,
R**2 * B,
G**2 * R,
B**2 * G,
R**3,
G**3,
B**3,
R**2 * G * B,
R * G**2 * B,
R * G * B**2,
]
)


def matrix_colour_correction_Cheung2004(
M_T: ArrayLike,
M_R: ArrayLike,
terms: Literal[3, 5, 7, 8, 10, 11, 14, 16, 17, 19, 20, 22] = 3,
) -> NDArray:
"""
Compute a colour correction matrix from given :math:`M_T` colour array to
:math:`M_R` colour array using *Cheung et al. (2004)* method.

Parameters
----------
M_T
Test array :math:`M_T` to fit onto array :math:`M_R`.
M_R
Reference array the array :math:`M_T` will be colour fitted against.
terms
Number of terms of the expanded polynomial.

Returns
-------
:class:`numpy.ndarray`
Colour correction matrix.

References
----------
:cite:`Cheung2004`, :cite:`Westland2004`

Examples
--------
>>> prng = np.random.RandomState(2)
>>> M_T = prng.random_sample((24, 3))
>>> M_R = M_T + (prng.random_sample((24, 3)) - 0.5) * 0.5
>>> matrix_colour_correction_Cheung2004(M_T, M_R) # doctest: +ELLIPSIS
array([[ 1.0526376..., 0.1378078..., -0.2276339...],
[ 0.0739584..., 1.0293994..., -0.1060115...],
[ 0.0572550..., -0.2052633..., 1.1015194...]])
"""

return least_square_mapping_MoorePenrose(
matrix_augmented_Cheung2004(M_T, terms), M_R
)


def colour_correction_Cheung2004(
RGB: ArrayLike,
M_T: ArrayLike,
M_R: ArrayLike,
terms: Literal[3, 5, 7, 8, 10, 11, 14, 16, 17, 19, 20, 22] = 3,
) -> NDArray:
"""
Perform colour correction of given *RGB* colourspace array using the
colour correction matrix from given :math:`M_T` colour array to
:math:`M_R` colour array using *Cheung et al. (2004)* method.

Parameters
----------
RGB
*RGB* colourspace array to colour correct.
M_T
Test array :math:`M_T` to fit onto array :math:`M_R`.
M_R
Reference array the array :math:`M_T` will be colour fitted against.
terms
Number of terms of the expanded polynomial.

Returns
-------
:class:`numpy.ndarray`
Colour corrected *RGB* colourspace array.

References
----------
:cite:`Cheung2004`, :cite:`Westland2004`

Examples
--------
>>> RGB = np.array([0.17224810, 0.09170660, 0.06416938])
>>> prng = np.random.RandomState(2)
>>> M_T = prng.random_sample((24, 3))
>>> M_R = M_T + (prng.random_sample((24, 3)) - 0.5) * 0.5
>>> colour_correction_Cheung2004(RGB, M_T, M_R) # doctest: +ELLIPSIS
array([ 0.1793456..., 0.1003392..., 0.0617218...])
"""

RGB = as_float_array(RGB)
shape = RGB.shape

RGB = np.reshape(RGB, (-1, 3))

RGB_e = matrix_augmented_Cheung2004(RGB, terms)

CCM = matrix_colour_correction_Cheung2004(M_T, M_R, terms)

return np.reshape(np.transpose(np.dot(CCM, np.transpose(RGB_e))), shape)

我可能会推荐直接使用Colour,因为有多种方法可以根据训练集给出不同的结果。话虽这么说,但鉴于您实际上只有 4 种彩色且没有非彩色,我不会期待很好的结果。此类校准的最低推荐图表是具有 24 个色 block 的 ColorChecker Classic。

关于python - 使用最小二乘法进行颜色校正,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/74316151/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com