gpt4 book ai didi

image - PyTorch 自定义数据集数据加载器返回字符串(键)而不是张量

转载 作者:行者123 更新时间:2023-12-05 02:15:53 25 4
gpt4 key购买 nike

我正在尝试加载我自己的数据集,我使用自定义 Dataloader 读取图像和标签并将它们转换为 PyTorch 张量。然而,当 Dataloader 被实例化时,它返回字符串 x "image" 和 y "labels" 但不是实际值或读取时的张量 (iter)

print(self.train_loader)  # shows a Tensor object
tic = time.time()
with tqdm(total=self.num_train) as pbar:
for i, (x, y) in enumerate(self.train_loader): # x and y are returned as string (where it fails)

if self.use_gpu:
x, y = x.cuda(), y.cuda()
x, y = Variable(x), Variable(y)

这是 dataloader.py 的样子:

from __future__ import print_function, division #ds
import numpy as np
from utils import plot_images

import os #ds
import pandas as pd #ds
from skimage import io, transform #ds
import torch
from torchvision import datasets
from torch.utils.data import Dataset, DataLoader #ds
from torchvision import transforms
from torchvision import utils #ds
from torch.utils.data.sampler import SubsetRandomSampler


class CDataset(Dataset):


def __init__(self, csv_file, root_dir, transform=None):
"""
Args:
csv_file (string): Path to the csv file with annotations.
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.frame = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform

def __len__(self):
return len(self.frame)

def __getitem__(self, idx):
img_name = os.path.join(self.root_dir,
self.frame.iloc[idx, 0]+'.jpg')
image = io.imread(img_name)
# image = image.transpose((2, 0, 1))
labels = np.array(self.frame.iloc[idx, 1])#.as_matrix() #ds
#landmarks = landmarks.astype('float').reshape(-1, 2)
#print(image.shape)
#print(img_name,labels)
sample = {'image': image, 'labels': labels}

if self.transform:
sample = self.transform(sample)

return sample

class ToTensor(object):
"""Convert ndarrays in sample to Tensors."""


def __call__(self, sample):
image, labels = sample['image'], sample['labels']
#print(image)
#print(labels)
# swap color axis because
# numpy image: H x W x C
# torch image: C X H X W
image = image.transpose((2, 0, 1))
#print(image.shape)
#print((torch.from_numpy(image)))
#print((torch.from_numpy(labels)))
return {'image': torch.from_numpy(image),
'labels': torch.from_numpy(labels)}


def get_train_valid_loader(data_dir,
batch_size,
random_seed,
#valid_size=0.1, #ds
#shuffle=True,
show_sample=False,
num_workers=4,
pin_memory=False):
"""
Utility function for loading and returning train and valid
multi-process iterators over the MNIST dataset. A sample
9x9 grid of the images can be optionally displayed.

If using CUDA, num_workers should be set to 1 and pin_memory to True.

Args
----
- data_dir: path directory to the dataset.
- batch_size: how many samples per batch to load.
- random_seed: fix seed for reproducibility.
- #ds valid_size: percentage split of the training set used for
the validation set. Should be a float in the range [0, 1].
In the paper, this number is set to 0.1.
- shuffle: whether to shuffle the train/validation indices.
- show_sample: plot 9x9 sample grid of the dataset.
- num_workers: number of subprocesses to use when loading the dataset.
- pin_memory: whether to copy tensors into CUDA pinned memory. Set it to
True if using GPU.

Returns
-------
- train_loader: training set iterator.
- valid_loader: validation set iterator.
"""
#ds
#error_msg = "[!] valid_size should be in the range [0, 1]."
#assert ((valid_size >= 0) and (valid_size <= 1)), error_msg
#ds

# define transforms
#normalize = transforms.Normalize((0.1307,), (0.3081,))
trans = transforms.Compose([
ToTensor(), #normalize,
])

# load train dataset
#train_dataset = datasets.MNIST(
# data_dir, train=True, download=True, transform=trans
#)


train_dataset = CDataset(csv_file='/home/Desktop/6June17/util/train.csv',
root_dir='/home/caffe/data/images/',transform=trans)

# load validation dataset
#valid_dataset = datasets.MNIST( #ds
# data_dir, train=True, download=True, transform=trans #ds
#)

valid_dataset = CDataset(csv_file='/home/Desktop/6June17/util/eval.csv',
root_dir='/home/caffe/data/images/',transform=trans)

num_train = len(train_dataset)
train_indices = list(range(num_train))
#ds split = int(np.floor(valid_size * num_train))

num_valid = len(valid_dataset) #ds
valid_indices = list(range(num_valid)) #ds

#if shuffle:
# np.random.seed(random_seed)
# np.random.shuffle(indices)

#ds train_idx, valid_idx = indices[split:], indices[:split]
train_idx = train_indices #ds
valid_idx = valid_indices #ds

train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)

train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, sampler=train_sampler,
num_workers=num_workers, pin_memory=pin_memory,
)

print(train_loader)

valid_loader = torch.utils.data.DataLoader(
valid_dataset, batch_size=batch_size, sampler=valid_sampler,
num_workers=num_workers, pin_memory=pin_memory,
)

# visualize some images
if show_sample:
sample_loader = torch.utils.data.DataLoader(
dataset, batch_size=9, #shuffle=shuffle,
num_workers=num_workers, pin_memory=pin_memory
)
data_iter = iter(sample_loader)
images, labels = data_iter.next()
X = images.numpy()
X = np.transpose(X, [0, 2, 3, 1])
plot_images(X, labels)

return (train_loader, valid_loader)


def get_test_loader(data_dir,
batch_size,
num_workers=4,
pin_memory=False):
"""
Utility function for loading and returning a multi-process
test iterator over the MNIST dataset.

If using CUDA, num_workers should be set to 1 and pin_memory to True.

Args
----
- data_dir: path directory to the dataset.
- batch_size: how many samples per batch to load.
- num_workers: number of subprocesses to use when loading the dataset.
- pin_memory: whether to copy tensors into CUDA pinned memory. Set it to
True if using GPU.

Returns
-------
- data_loader: test set iterator.
"""
# define transforms
#normalize = transforms.Normalize((0.1307,), (0.3081,))
trans = transforms.Compose([
ToTensor(), #normalize,
])

# load dataset
#dataset = datasets.MNIST(
# data_dir, train=False, download=True, transform=trans
#)

test_dataset = CDataset(csv_file='/home/Desktop/6June17/util/test.csv',
root_dir='/home/caffe/data/images/',transform=trans)

test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=batch_size, shuffle=False,
num_workers=num_workers, pin_memory=pin_memory,
)

return test_loader


#for i_batch, sample_batched in enumerate(dataloader):
# print(i_batch, sample_batched['image'].size(),
# sample_batched['landmarks'].size())

# # observe 4th batch and stop.
# if i_batch == 3:
# plt.figure()
# show_landmarks_batch(sample_batched)
# plt.axis('off')
# plt.ioff()
# plt.show()
# break

一个最小的工作示例很难在这里发布,但基本上我正在尝试修改这个项目 http://torch.ch/blog/2015/09/21/rmva.html与 MNIST 一起顺利工作。我只是想用我自己的数据集和上面使用的自定义 dataloader.py 来运行它。

它像这样实例化一个Dataloader:

trainer.py 中:

if config.is_train:
self.train_loader = data_loader[0]
self.valid_loader = data_loader[1]
self.num_train = len(self.train_loader.sampler.indices)
self.num_valid = len(self.valid_loader.sampler.indices)

-> 从 main.py 运行:

if config.is_train:
data_loader = get_train_valid_loader(
config.data_dir, config.batch_size,
config.random_seed, #config.valid_size,
#config.shuffle,
config.show_sample, **kwargs
)

最佳答案

您没有正确使用 python 的 enumerate()(x, y) 当前分配了批处理字典的 2 个键,即字符串 "image""labels"。这应该可以解决您的问题:

for i, batch in enumerate(self.train_loader):
x, y = batch["image"], batch["labels"]
# ...

关于image - PyTorch 自定义数据集数据加载器返回字符串(键)而不是张量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50878650/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com