gpt4 book ai didi

r - 具有交互项的联合显着性检验 : contains bad coefficient/variable names

转载 作者:行者123 更新时间:2023-12-05 02:14:46 28 4
gpt4 key购买 nike

我正在尝试在 R 中运行联合显着性检验:

library(car)
data("mtcars")
mylm <- lm(mpg ~ qsec + gear + am + am:qsec + am:hp, data=mtcars)

linearHypothesis(mylm, c("am + am:qsec + am:hp"))

但我总是以这个错误结束:

Error in constants(lhs, cnames_symb) : 
The hypothesis "am + am:qsec + am:hp" is not well formed: contains bad coefficient/variable names.

我想测试的是是否

am + am:qsec + am:hp = 0

我在文档中找到了如何测试所有交互项:

linearHypothesis(mylm, matchCoefs(mylm, ":"), verbose=TRUE)

但我想同时测试交互项和级别项。这可能吗?

最佳答案

只需注意

mylm$coefficients
# (Intercept) qsec gear am qsec:am am:hp
# -12.2376256 0.8891289 4.1170265 -19.4050359 1.5298394 -0.0316123

qsec:am 而不是 am:qsec。然后

linearHypothesis(mylm, c("am + qsec:am + am:hp"))

确实有效,但这种排序并不明显。例如,

lm(mpg ~ am:qsec + am:hp, data = mtcars)$coef
# (Intercept) am:qsec am:hp
# 17.1256930 0.7542508 -0.0456892

关于r - 具有交互项的联合显着性检验 : contains bad coefficient/variable names,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53073786/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com