gpt4 book ai didi

r - Sparklyr 拆分字符串(到字符串)

转载 作者:行者123 更新时间:2023-12-05 02:13:52 29 4
gpt4 key购买 nike

尝试在 sparklyr 中拆分一个字符串,然后将其用于连接/过滤

我尝试了将字符串标记化然后将其分离到新列的建议方法。这是一个可重现的示例(请注意,我必须将在 copy_to 之后变成字符串“NA”的 NA 翻译成实际的 NA,有没有办法不必这样做)

x <- data.frame(Id=c(1,2,3,4),A=c('A-B','A-C','A-D',NA))
df <- copy_to(sc,x,'df')

df %>% mutate(A = ifelse(A=='NA',NA,A)) %>% ft_regex_tokenizer(input.col="A", output.col="B", pattern="-",to_lower_case=F) %>%
sdf_separate_column("B", into=c("C", "D")) %>% filter(C=='A')

问题是,如果我尝试过滤新创建的列(例如 %>% filter(C=='A') 或加入它们,我会收到错误,见下文

Error : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 367.0 failed 4 times, most recent failure: Lost task 0.3 in stage 367.0 (TID 5062, 10.139.64.4, executor 0): org.apache.spark.SparkException: Failed to execute user defined function($anonfun$createTransformFunc$2: (string) => array<string>)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$11$$anon$1.hasNext(WholeStageCodegenExec.scala:622)
at org.apache.spark.sql.execution.collect.UnsafeRowBatchUtils$.encodeUnsafeRows(UnsafeRowBatchUtils.scala:51)
at org.apache.spark.sql.execution.collect.Collector$$anonfun$2.apply(Collector.scala:148)
at org.apache.spark.sql.execution.collect.Collector$$anonfun$2.apply(Collector.scala:147)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.doRunTask(Task.scala:139)
at org.apache.spark.scheduler.Task.run(Task.scala:112)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$13.apply(Executor.scala:497)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1432)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:503)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.NullPointerException
at java.util.regex.Matcher.getTextLength(Matcher.java:1283)
at java.util.regex.Matcher.reset(Matcher.java:309)
at java.util.regex.Matcher.<init>(Matcher.java:229)
at java.util.regex.Pattern.matcher(Pattern.java:1093)
at java.util.regex.Pattern.split(Pattern.java:1206)
at java.util.regex.Pattern.split(Pattern.java:1273)
at scala.util.matching.Regex.split(Regex.scala:526)
at org.apache.spark.ml.feature.RegexTokenizer$$anonfun$createTransformFunc$2.apply(Tokenizer.scala:144)
at org.apache.spark.ml.feature.RegexTokenizer$$anonfun$createTransformFunc$2.apply(Tokenizer.scala:141)
... 15 more

Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:2100)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2088)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:2087)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2087)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:1076)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:1076)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1076)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2319)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2267)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2255)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:873)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2252)
at org.apache.spark.sql.execution.collect.Collector.runSparkJobs(Collector.scala:259)
at org.apache.spark.sql.execution.collect.Collector.collect(Collector.scala:269)
at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:69)
at org.apache.spark.sql.execution.collect.Collector$.collect(Collector.scala:75)
at org.apache.spark.sql.execution.ResultCacheManager.getOrComputeResult(ResultCacheManager.scala:497)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollectResult(limit.scala:48)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectResult(Dataset.scala:2827)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3439)
at org.apache.spark.sql.Dataset$$anonfun$collect$1.apply(Dataset.scala:2794)
at org.apache.spark.sql.Dataset$$anonfun$collect$1.apply(Dataset.scala:2794)
at org.apache.spark.sql.Dataset$$anonfun$54.apply(Dataset.scala:3423)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withCustomExecutionEnv$1.apply(SQLExecution.scala:99)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:228)
at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:85)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:158)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withAction(Dataset.scala:3422)
at org.apache.spark.sql.Dataset.collect(Dataset.scala:2794)
at sparklyr.Utils$.collect(utils.scala:200)
at sparklyr.Utils.collect(utils.scala)
at sun.reflect.GeneratedMethodAccessor577.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at sparklyr.Invoke.invoke(invoke.scala:139)
at sparklyr.StreamHandler.handleMethodCall(stream.scala:123)
at sparklyr.StreamHandler.read(stream.scala:66)
at sparklyr.BackendHandler.channelRead0(handler.scala:51)
at sparklyr.BackendHandler.channelRead0(handler.scala:4)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:102)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
at io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:310)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:284)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1359)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:935)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:138)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:645)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:580)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:497)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:459)
at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:858)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:138)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkExcepti
In addition: Warning messages:
1: The parameter `input.col` is deprecated and will be removed in a future release. Please use `input_col` instead.
2: The parameter `output.col` is deprecated and will be removed in a future release. Please use `output_col` instead

不确定为什么创建的列的类型根据 sdf_schema 是“StringType”。

是否有使用 sparklyr 实际分离列的解决方案,我以后可以将其用作字符串,而不必将框架写到文件中,或者不必收集到驱动程序节点?

最佳答案

在这里使用 Spark ML 转换器不是一个好的选择。相反,你应该 split 函数:

df %>% 
mutate(B = split(A, "-")) %>%
sdf_separate_column("B", into = c("C", "D")) %>%
filter(C %IS NOT DISTINCT FROM% "A")
# Source: spark<?> [?? x 5]
Id A B C D
<dbl> <chr> <list> <chr> <chr>
1 1 A-B <list [2]> A B
2 2 A-C <list [2]> A C
3 3 A-D <list [2]> A D

regexp_extract

pattern <- "^(.*)-(.*)$"

df %>%
mutate(
C = regexp_extract(A, pattern, 1),
D = regexp_extract(A, pattern, 2)
) %>%
filter(C %IS NOT DISTINCT FROM% "A")
# Source: spark<?> [?? x 4]
Id A C D
<dbl> <chr> <chr> <chr>
1 1 A-B A B
2 2 A-C A C
3 3 A-D A D

尽管如此,如果你想让 RegexpTokenzier 工作,你必须先处理 NULL(外部 R 类型中的 NA)。例如可以使用 coalesce

来完成
tokenizer <- ft_regex_tokenizer(
sc, input_col = "A", output_col = "B",
pattern = "-", to_lower_case = F
)

df %>%
mutate(A = coalesce(A, "")) %>%
ml_transform(tokenizer, .) %>%
sdf_separate_column("B", into=c("C", "D")) %>%
filter(C %IS NOT DISTINCT FROM% "A")
# Source: spark<?> [?? x 5]
Id A B C D
<dbl> <chr> <list> <chr> <chr>
1 1 A-B <list [2]> A B
2 2 A-C <list [2]> A C
3 3 A-D <list [2]> A D

或者先删除丢失的数据:

df %>%  
# or filter(!is.na(A))
na.omit(columns=c("A")) %>%
ml_transform(tokenizer, .) %>%
sdf_separate_column("B", into=c("C", "D")) %>%
filter(C %IS NOT DISTINCT FROM% "A")
* Dropped 1 rows with 'na.omit' (4 => 3)
# Source: spark<?> [?? x 5]
Id A B C D
<dbl> <chr> <list> <chr> <chr>
1 1 A-B <list [2]> A B
2 2 A-C <list [2]> A C
3 3 A-D <list [2]> A D

关于r - Sparklyr 拆分字符串(到字符串),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54522707/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com