- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
完整错误:
UnknownError: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above. [Op:Conv2D]
用于包安装的命令:
conda install -c anaconda keras-gpu
已安装:
我已经尝试从 nvidia 网站安装 cuda-toolkit,它没有解决问题,所以建议与 conda 命令相关。
一些博客建议安装 visual studio,但如果我有 spyder IDE,还需要什么?
代码:
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Convolution2D
from tensorflow.keras.layers import MaxPooling2D
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Dense
classifier = Sequential()
classifier.add(Convolution2D(32, 3, 3, input_shape = (64, 64, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
classifier.add(Convolution2D(32, 3, 3, activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
classifier.add(Flatten())
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dense(units = 1, activation = 'sigmoid'))
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('dataset/training_set',
target_size = (64, 64),
batch_size = 4,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('dataset/test_set',
target_size = (64, 64),
batch_size = 4,
class_mode = 'binary')
classifier.fit_generator(training_set,
steps_per_epoch = 8000,
epochs = 25,
validation_data = test_set,
validation_steps = 2000)
执行下面的代码后出现错误:
classifier.fit_generator(training_set,
steps_per_epoch = 8000,
epochs = 25,
validation_data = test_set,
validation_steps = 2000)
编辑 1:追溯
Traceback (most recent call last):
File "D:\Machine Learning\Machine Learning A-Z Template Folder\Part 8 - Deep Learning\Section 40 - Convolutional Neural Networks (CNN)\cnn.py", line 70, in <module>
validation_steps = 2000)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 1297, in fit_generator
steps_name='steps_per_epoch')
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\keras\engine\training_generator.py", line 265, in model_iteration
batch_outs = batch_function(*batch_data)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 973, in train_on_batch
class_weight=class_weight, reset_metrics=reset_metrics)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\keras\engine\training_v2_utils.py", line 264, in train_on_batch
output_loss_metrics=model._output_loss_metrics)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\keras\engine\training_eager.py", line 311, in train_on_batch
output_loss_metrics=output_loss_metrics))
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\keras\engine\training_eager.py", line 252, in _process_single_batch
training=training))
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\keras\engine\training_eager.py", line 127, in _model_loss
outs = model(inputs, **kwargs)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 891, in __call__
outputs = self.call(cast_inputs, *args, **kwargs)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\keras\engine\sequential.py", line 256, in call
return super(Sequential, self).call(inputs, training=training, mask=mask)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\keras\engine\network.py", line 708, in call
convert_kwargs_to_constants=base_layer_utils.call_context().saving)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\keras\engine\network.py", line 860, in _run_internal_graph
output_tensors = layer(computed_tensors, **kwargs)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 891, in __call__
outputs = self.call(cast_inputs, *args, **kwargs)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\keras\layers\convolutional.py", line 197, in call
outputs = self._convolution_op(inputs, self.kernel)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\ops\nn_ops.py", line 1134, in __call__
return self.conv_op(inp, filter)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\ops\nn_ops.py", line 639, in __call__
return self.call(inp, filter)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\ops\nn_ops.py", line 238, in __call__
name=self.name)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\ops\nn_ops.py", line 2010, in conv2d
name=name)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\ops\gen_nn_ops.py", line 1031, in conv2d
data_format=data_format, dilations=dilations, name=name, ctx=_ctx)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\ops\gen_nn_ops.py", line 1130, in conv2d_eager_fallback
ctx=_ctx, name=name)
File "C:\Anaconda\envs\ML\lib\site-packages\tensorflow_core\python\eager\execute.py", line 67, in quick_execute
six.raise_from(core._status_to_exception(e.code, message), None)
File "<string>", line 3, in raise_from
UnknownError: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above. [Op:Conv2D]
最佳答案
下面的代码解决了这个问题:
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
except RuntimeError as e:
print(e)
关于python - 未知错误 : Failed to get convolution algorithm,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59873568/
我在一本书(Interview Question)中读到这个问题,想在这里详细讨论这个问题。请点亮它。 问题如下:- 隐私和匿名化 马萨诸塞州集团保险委员会早在 1990 年代中期就有一个绝妙的主意
我最近接受了一次面试,面试官给了我一些伪代码并提出了相关问题。不幸的是,由于准备不足,我无法回答他的问题。由于时间关系,我无法向他请教该问题的解决方案。如果有人可以指导我并帮助我理解问题,以便我可以改
这是我的代码 public int getDist(Node root, int value) { if (root == null && value !=0) return
就效率而言,Strassen 算法应该停止递归并应用乘法的最佳交叉点是多少? 我知道这与具体的实现和硬件密切相关,但对于一般情况应该有某种指南或某人的一些实验结果。 在网上搜索了一下,问了一些他们认为
我想学习一些关于分布式算法的知识,所以我正在寻找任何书籍推荐。我对理论书籍更感兴趣,因为实现只是个人喜好问题(我可能会使用 erlang(或 c#))。但另一方面,我不想对算法进行原始的数学分析。只是
我想知道你们中有多少人实现了计算机科学的“ classical algorithms ”,例如 Dijkstra's algorithm或现实世界中的数据结构(例如二叉搜索树),而不是学术项目? 当有
我正在解决旧编程竞赛中的一些示例问题。在这个问题中,我们得到了我们有多少调酒师以及他们知道哪些食谱的信息。制作每杯鸡尾酒需要 1 分钟,我们需要使用所有调酒师计算是否可以在 5 分钟内完成订单。 解决
关闭。这个问题是opinion-based .它目前不接受答案。 想要改进这个问题? 更新问题,以便 editing this post 可以用事实和引用来回答它. 关闭 8 年前。 Improve
我开始学习 Nodejs,但我被困在中间的某个地方。我从 npm 安装了一个新库,它是 express -jwt ,它在运行后显示某种错误。附上代码和错误日志,请帮助我! const jwt = re
我有一个证书,其中签名算法显示“sha256rsa”,但指纹算法显示“sha1”。我的证书 SHA1/SHA2 的标识是什么? 谢谢! 最佳答案 TL;TR:签名和指纹是完全不同的东西。对于证书的强度
我目前在我的大学学习数据结构类(class),并且在之前的类(class)中做过一些算法分析,但这是我在之前的类(class)中遇到的最困难的部分。我们现在将在我的数据结构类(class)中学习算法分
有一个由 N 个 1x1 方格组成的区域,并且该区域的所有部分都是相连的(没有任何方格无法到达的方格)。 下面是一些面积的例子。 我想在这个区域中选择一些方块,并且两个相邻的方块不能一起选择(对角接触
我有一些多边形形状的点列表,我想将其包含在我页面上的 Google map 中。 我已经从原始数据中删除了尽可能多的不必要的多边形,现在我剩下大约 12 个,但它们非常详细以至于导致了问题。现在我的文
我目前正在实现 Marching Squares用于计算等高线曲线,我对此处提到的位移位的使用有疑问 Compose the 4 bits at the corners of the cell to
我正在尝试针对给定算法的约束满足问题实现此递归回溯函数: function BACKTRACKING-SEARCH(csp) returns solution/failure return R
是否有包含反函数的库? 作为项目的一部分,我目前正在研究测向算法。我正在使用巴特利特相关性。在 Bartlett 相关性中,我需要将已经是 3 次矩阵乘法(包括 Hermitian 转置)的分子除以作
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 这个问题似乎与 help center 中定义的范围内的编程无关。 . 关闭 8 年前。 Improve
问题的链接是UVA - 1394 : And There Was One . 朴素的算法是扫描整个数组并在每次迭代中标记第 k 个元素并在最后停止:这需要 O(n^2) 时间。 我搜索了一种替代算法并
COM 中创建 GUID 的函数 (CoCreateGUID) 使用“分散唯一性算法”,但我的问题是,它是什么? 谁能解释一下? 最佳答案 一种生成 ID 的方法,该 ID 具有一定的唯一性保证,而不
在做一个项目时我遇到了这个问题,我将在这个问题的实际领域之外重新措辞(我想我可以谈论烟花的口径和形状,但这会使理解更加复杂).我正在寻找一种(可能是近似的)算法来解决它。 我有 n 个不同大小的容器,
我是一名优秀的程序员,十分优秀!