- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想将 numpy
数组 arr
中的所有非零元素添加到列表 out_list
中。之前的研究表明,对于 numpy 数组,使用 np.nonzero
是最有效的。 (下面我自己的基准实际上表明可以使用 np.delete
稍微改进它)。
但是,在我的例子中,我希望我的输出是一个列表,因为我正在组合许多我不知道非零元素数量的数组(因此我无法有效地为它们预分配一个 numpy 数组)。因此,我想知道是否可以利用一些协同作用来加快这一进程。虽然我的简单列表理解方法比纯 numpy 方法慢得多,但我将列表理解与 numba
结合起来得到了一些有希望的结果。
这是我目前的发现:
import numpy as np
n = 60_000 # size of array
nz = 0.3 # fraction of zero elements
arr = (np.random.random_sample(n) - nz).clip(min=0)
# method 1
def add_to_list1(arr, out):
out.extend(list(arr[np.nonzero(arr)]))
# method 2
def add_to_list2(arr, out):
out.extend(list(np.delete(arr, arr == 0)))
# method 3
def add_to_list3(arr, out):
out += [x for x in arr if x != 0]
# method 4 (not sure how to get numba to accept an empty list as argument)
@njit
def add_to_list4(arr):
return [x for x in arr if x != 0]
out_list = []
%timeit add_to_list1(arr, out_list)
out_list = []
%timeit add_to_list2(arr, out_list)
out_list = []
%timeit add_to_list3(arr, out_list)
_ = add_to_list4(arr) # call once to compile
out_list = []
%timeit out_list.extend(add_to_list4(arr))
产生以下结果:
2.51 ms ± 137 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.19 ms ± 133 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
15.6 ms ± 183 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
1.63 ms ± 158 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
毫不奇怪,numba
优于所有其他方法。其中,方法 2(使用 np.delete
)是最好的。我是否遗漏了任何明显的替代方案,这些替代方案利用了我之后转换为列表的事实?你能想出什么来进一步加快这个过程吗?
.tolist()
的性能:
# method 5
def add_to_list5(arr, out):
out += arr[arr != 0].tolist()
# method 6
def add_to_list6(arr, out):
out += np.delete(arr, arr == 0).tolist()
# method 7
def add_to_list7(arr, out):
out += arr[arr.astype(bool)].tolist()
时间与 numba
相同:
1.62 ms ± 118 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.65 ms ± 104 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each
1.78 ms ± 119 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
这里有一些使用疯狂物理学家建议使用 np.concatenate
来构建 numpy
数组的基准测试。
# construct numpy array using np.concatenate
out_list = []
t = time.perf_counter()
for i in range(100):
out_list.append(arr[arr != 0])
result = np.concatenate(out_list)
print(f"Time elapsed: {time.perf_counter() - t:.4f}s")
# compare with best list-based method
out_list = []
t = time.perf_counter()
for i in range(100):
out_list += arr[arr != 0].tolist()
print(f"Time elapsed: {time.perf_counter() - t:.4f}s")
连接 numpy
数组确实产生了另一个显着的加速,尽管它不能直接比较,因为输出是 numpy
数组而不是列表。所以这将取决于精确使用什么是最好的。
Time elapsed: 0.0400s
Time elapsed: 0.1430s
1/使用 arr[arr != 0]
是所有索引选项中最快的
2/使用 .tolist()
而不是 list(.)
将速度提高 1.3 - 1.5 倍
3/结合 1/和 2/的增益,速度与 numba
4/如果使用 numpy
数组而不是 list
是可以接受的,那么使用 np.concatenate
可以通过与最佳替代方案相比约 3.5 倍
最佳答案
如果您确实在寻找 list
输出,我认为选择的方法是:
def f(arr, out_list):
out_list += arr[arr != 0].tolist()
它似乎击败了迄今为止在 OP 的问题或其他回复(在撰写本文时)中提到的所有其他方法。
但是,如果您正在寻找作为 numpy
数组的结果,则遵循@MadPhysicist 的版本(略微修改为使用 arr[arr != 0]
使用 np.nonzero()
) 几乎快 6 倍,请参阅本文末尾。
旁注:我会避免使用%timeit out_list.extend(some_list)
:它在许多循环中不断添加到out_list
时间
。示例:
out_list = []
%timeit out_list.extend([1,2,3])
现在:
>>> len(out_list)
243333333 # yikes
时间
在我机器上的 60K 个项目上,我看到:
out_list = []
a = %timeit -o out_list + arr[arr != 0].tolist()
b = %timeit -o out_list + arr[np.nonzero(arr)].tolist()
c = %timeit -o out_list + list(arr[np.nonzero(arr)])
产量:
1.23 ms ± 10.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.53 ms ± 2.53 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
4.29 ms ± 3.02 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
和:
>>> c.average / a.average
3.476
>>> b.average / a.average
1.244
改为 numpy
数组结果
按照@MadPhysicist,您可以通过不将数组转换为列表,而是使用np.concatenate()
来获得额外的提升:
def all_nonzero(arr_iter):
"""return non zero elements of all arrays as a np.array"""
return np.concatenate([a[a != 0] for a in arr_iter])
def all_nonzero_list(arr_iter):
"""return non zero elements of all arrays as a list"""
out_list = []
for a in arr_iter:
out_list += a[a != 0].tolist()
return out_list
from itertools import repeat
ta = %timeit -o all_nonzero(repeat(arr, 100))
tl = %timeit -o all_nonzero_list(repeat(arr, 100))
产量:
39.7 ms ± 107 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
227 ms ± 680 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
和
>>> tl.average / ta.average
5.75
关于python - 将非零 numpy 数组元素附加到列表的最快方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/66404407/
什么是更快的安卓? Color.rgb(184, 134, 011); 或 Color.parseColor("#234181"); 还是别的什么? 答案:最快的似乎是: int mycolor =
没错, 基本上我需要计算出从服务器到最终用户的最短路线。我有 2 台服务器 - 一台在英国,一台在美国。 我需要根据最终用户的位置确定从哪个服务器加载内容。 我最初想使用 fsock/curl/fgc
我正在阅读固定宽度整数类型 ( cpp reference) 并遇到int_fast8_t、int_fast16_t、int_fast32_t 和 int_least8_t 类型,int_least1
Closed. This question is opinion-based。它当前不接受答案。 想改善这个问题吗?更新问题,以便editing this post用事实和引用来回答。 6年前关闭。
我有大量目录,我想尽快读取所有文件。我的意思是,不是 DirectoryInfo.GetFiles 快,而是“get-clusters-from-disk-low-level”快。 当然,.NET 2
我尝试寻找最小的可被1到n整除的数字,现在我正在寻求有关进一步压缩/使我的解决方案更有效的方法的建议。如果也有O(1)解决方案,那将非常酷。 def get_smallest_number(n):
有很多不同的方法可以在驱动程序之间选择元素。我想知道哪一个最快且最适合 native 应用程序(iOS 和 Android)。 Appium Driver 类有: findElementByAcces
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 要求我们推荐或查找工具、库或最喜欢的场外资源的问题对于 Stack Overflow 来说是偏离主题的,
让矩阵 A 说 A = magic(100);。我见过两种计算矩阵 A 的所有元素之和的方法。 sumOfA = sum(sum(A)); 或者 sumOfA = sum(A(:)); 其中一个比另一
我想为玩具车在没有障碍物的平面 (2d) 上规划一条路线。玩具车应该从点 (p1x,p1y) 移动到 (p2x,p2y)(又名狄利克雷边界条件)。此外,玩具车在起点的速度是(v1x,v1y),终点处要
假设有 n 个 3 维对象(多面体)。最快的方法是计算所有对象的交集O(n^2)? 现在,我正在使用一个基本上强制 T(n) 等于 n ^ 2 的库: for each object: // ther
关闭。这个问题需要 details or clarity 。它目前不接受答案。 想改进这个问题吗? 添加细节并通过 editing this post 澄清问题。 关闭 5 年前。 Improve
在 c: 上,我有数以万计的 *.foobar 文件。它们在各种各样的地方(即子目录)。这些文件的大小大约为 1 - 64 kb,并且是纯文本。 我有一个 class Foobar(string fi
我的基本问题是有多个线程做一些事情,其中一些需要比其他线程更多的时间(20 倍甚至更多),他们需要的时间只取决于起始值,但不能从起始值预测单独他们需要多少时间。为了减少更快线程的空闲时间,我想通过
好的,我有一个疑问: select distinct(a) from mytable where b in (0,3) 什么会更快,上面的还是 select distinct(a) from myta
问题简介: 我正在开发一个生态生理模型,我使用了一个名为 S 的引用类列表。存储模型需要输入/输出的每个对象(例如气象、生理参数等)。 此列表包含 5 个对象(请参见下面的示例): - 两个数据帧,S
我有一个正在工作的问题陈述,但我仍然想知道更高效、更快,更重要的是正确设计来处理下面提到的场景。 我有一个 POJO 类 class A { String s; Double d; } 我正在
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 3 年前。 Improve this q
关于 LLVM 如何优化代码,关于 SO 以及整个网络都有一些非常好的描述。但这些都无法回答我的具体问题。 在 Xcode 中,项目和目标设置中有各种代码优化选项。我理解在开发过程中不需要优化,但为什
我正在用 C# 开发一个服务器项目,在收到 TCP 消息后,它会被解析并存储在一个精确大小的 byte[] 中。 (不是固定长度的缓冲区,而是存储所有数据的绝对长度的字节[]。) 现在为了阅读这个 b
我是一名优秀的程序员,十分优秀!