- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 bam(mgcv 库)拟合加法混合模型。我的数据集有 10^6 个观察结果,这些观察结果来自对 300 个健康中心内嵌套的 2.10^5 个 child 的生长纵向研究。我正在寻找每个中心的坡度。模型是
bam(haz ~ s(month, bs = "cc", k = 12)+ sex+ s(age)+ center+ year+ year*center+s(child, bs="re"), data)
每当我尝试拟合模型时,都会出现以下错误消息:
Error: cannot allocate vector of size 99.6 Gb
In addition: Warning message:
In matrix(by, n, q) : data length exceeds size of matrix
我正在使用 500 Gb de RAM 的集群。
谢谢你的帮助
最佳答案
要更准确地诊断问题出在哪里,请尝试在拟合模型时省略各种项。模型中有几个术语可能会让您大吃一惊:
center
的固定效果会爆炸 300 列 * 10^6 行;根据 year
是数字还是因子,year*center
项可能会增加到 600 列或 (nyears*300) 列bam
是否对 s(.,bs="re")
项使用稀疏矩阵;否则,您将遇到大麻烦(2*10^5 列 * 10^6 行)数量级,一个包含 10^6 个数值的向量(模型矩阵的一列)占用 7.6 Mb,因此 500 GB/7.6 MB 大约是 65,000 列 ...
这里只是猜测,但我会尝试 gamm4
包。它不是专门为低内存使用而设计的,但是:
‘gamm4’ is most useful when the random effects are not i.i.d., or when there are large numbers of random coeffecients [sic] (more than several hundred), each applying to only a small proportion of the response data.
我还会将大部分术语变成随机效应:
gamm4::gamm4(haz ~ s(month, bs = "cc", k = 12)+ sex+ s(age)+
(1|center)+ (1|year)+ (1|year:center)+(1|child), data)
或者,如果数据集中的年份不是很多,则将年份视为固定效应:
gamm4::gamm4(haz ~ s(month, bs = "cc", k = 12)+ sex+ s(age)+
year + (1|center)+ (1|year:center)+(1|child), data)
如果年份较少,则 (year|center)
可能有意义,以评估年份之间的中心变异和协变……如果年份很多,请考虑制作它一个平滑的术语......
关于r - mgcv bam() 错误 : cannot allocate vector of size 99. 6 Gb,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47999095/
我想澄清并在行中使用 :: 表示法来拟合 mgcv::gam。在使用 mgcv::s 模型调用中的符号时,我偶然发现了一件事。具有可重现示例/错误的代码如下所示。 原因可能是因为我在模型公式中使用了这
好吧,当我实际上犯了一个错误时,我就发现了这一点。我想获得mgcv.FAQ的手册页,但是我 忘记做library(mgcv); 错误地放入了?mgcv-faq。 但是,R奇怪地将我定向到doc页面,就
基于样条的 GAM 回归由以下成本函数定义: cost = ||y - S\beta ||^2 + scale * integral(|S''\beta|^2) 其中 S 是由样条定义的设计矩阵。 在
我正在尝试运行一个 GAM 模型,其中使用高斯过程对 X 和 Y 之间的交互进行建模。在 mgcv 中使用默认平滑 (s()) 时,下面的代码工作正常,但我想用张量积 (te( )) 据我了解,te
考虑如下简单的 GAM 拟合: library(mgcv) my.gam 0 && is.null(sm$no.rescale)) { maXX <- norm(sm$X, type = "
考虑如下简单的 GAM 拟合: library(mgcv) my.gam 0 && is.null(sm$no.rescale)) { maXX <- norm(sm$X, type = "
在 R 中,我想用分类变量拟合 gam 模型。我想我可以这样做(cat 是分类变量)。 lm(data = df, formula = y ~ x1*cat + x2 + x3); 但我不能做这样的事
我正在研究一个模型,其中包含多个 RE 和一个变量的样条,因此我尝试使用 gam() .但是,我遇到了内存耗尽限制错误(即使我在具有 128GB 的集群上运行它时也是如此)。即使我只用一个 RE
This thread从几年前开始描述了如何提取用于绘制拟合 Gam 模型平滑分量的数据。它有效,但仅当存在一个平滑变量时。我有不止一个平滑变量,不幸的是我只能从系列的最后一个中提取平滑。下面是一个例
使用 mgcv 的惩罚样条,我希望在示例数据中获得 10/年的有效自由度 (EDF)(整个周期为 60)。 library(mgcv) library(dlnm) df = '1995-01-01')
我想在 mgcv 包中使用函数 gam: x 结的位置 对于惩罚回归样条线,确切的位置并不重要,只要: k 足够大; 结的分布具有良好、合理的覆盖范围。 默认情况下: 自然三次回归样条bs = '
为什么 mgcv::gam.vcomp 显示与 mgcv::ti 进行的交互的两个方差分量? 我似乎无法在任何地方找到解释或字里行间的解释。方差是否可能归因于交互中的每个组件? require(mgc
我正在制作一个函数,它将对回归函数的未评估调用作为输入,创建一些数据,然后评估调用。这是一个例子: library(lme4) compute_fit Loading required packag
我使用 gam 对时间序列数据的季节性建模取得了巨大成功。除了季节性变化之外,我的最新模型清楚地显示了每周模式。虽然每周模式本身在一年中非常稳定,但其幅度也随季节变化。所以理想情况下,我想将我的数据建
有谁知道如何在 R 中使用 Tweedie 进行逐步回归? 我找到了 mgcv 包,它显然将 Tweedie 的功率参数视为另一个要估计的参数。这似乎改进了必须使用 tweedie.profile 来
在 R 中分离包并不是一个好的做法(请参阅?detach),但由于某些原因,我必须在包 gam 和mgcv。一旦 mgcv 被附加和分离(并且卸载命名空间中的所有依赖项!),gam 的函数会产生一些奇
我正在使用 GAM 对逻辑回归中的时间趋势进行建模。然而,我想从中提取拟合样条线以将其添加到另一个无法在 GAM 或 GAMM 中拟合的模型中。 因此我有两个问题: 我怎样才能随着时间的推移拟合更平滑
我使用 R 版本 2.15.1 (2012-06-22) 和 mgcv 版本 1.7-22 我在 R 中加载以下一组包: library(sqldf) library(timeDate) librar
如果答案很明显,我深表歉意,但我花了很多时间尝试在 mgcv.gam 中使用自定义链接功能 简而言之, 我想使用包 psyphy 中经过修改的 probit 链接(我想用psyphy.probit_2
我想使用 R.NET 链接到 IronPython 中的 R 统计包图书馆。它一直工作正常,但现在我需要使用 R 的 mgcv图书馆。 进口mgcv失败(导入使用命令 rdn.r.EagerEvalu
我是一名优秀的程序员,十分优秀!