- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 scikit-学习函数 normalize
和 VarianceThreshold
。
似乎如果我使用 MinMaxScaler
然后运行 VarianceThreshold
- 就没有剩余的功能。
缩放前:
Column: sepal length (cm) Mean: 5.843333333333334 var = 0.6811222222222223 var/mean: 0.11656398554858338
Column: sepal width (cm) Mean: 3.0573333333333337 var = 0.1887128888888889 var/mean: 0.06172466928332606
Column: petal length (cm) Mean: 3.7580000000000005 var = 3.0955026666666665 var/mean: 0.8237101295015078
Column: petal width (cm) Mean: 1.1993333333333336 var = 0.5771328888888888 var/mean: 0.48121141374837856
缩放后(MinMaxScaler
)
Column: sepal length (cm) Mean: 0.42870370370370364 var = 0.052555727023319614 var/mean: 0.12259219262459005
Column: sepal width (cm) Mean: 0.44055555555555553 var = 0.03276265432098764 var/mean: 0.07436668067815606
Column: petal length (cm) Mean: 0.46745762711864397 var = 0.08892567269941587 var/mean: 0.19023258481745967
Column: petal width (cm) Mean: 0.4580555555555556 var = 0.10019668209876545 var/mean: 0.2187435145879658
我将 VarianceThreshold
用作:
from sklearn.feature_selection import VarianceThreshold
sel = VarianceThreshold(threshold=(.8 * (1 - .8)))
如果我们想要移除具有低方差的特征,我们是否应该缩放数据(例如,通过 MinMaxScaler
)?
最佳答案
一般缩放数据不会帮助您找到冗余特征。
通常,VarianceThreshold
用于移除方差为零的特征,即不提供任何信息的常量。代码中的行 VarianceThreshold(threshold=(.8 * (1 - .8)))
丢弃方差低于 0.16 的所有特征。在您的情况下,所有功能的方差都低于该方差(在 MinMaxScaler
之后,最大方差是 0.1
的花瓣宽度),因此您可以丢弃所有内容。我相信您打算保留贡献超过 80% 的方差的功能,但这不是您的代码所做的。如果您在 MinMaxScaler
之前应用该行,那么您的所有功能都会通过。
为了去除低方差的特征,您首先需要定义该特定特征的合理阈值。但在一般情况下,您不能为方差设置硬编码的任意阈值,因为对于某些特征,该值会太高,而对于其他特征则太低。例如,PCA 通常用作特征选择程序。一个人执行 PCA 并只取 K 个第一特征向量,其中 K 的选择方式是相应特征值的“能量”是(比如说)总数的 95%(甚至 80%)。因此,如果您的数据集包含 50-100 个特征,您可以将特征数量减少十倍,而不会丢失太多信息。
当您应用 StandardScaler
时,您的所有特征都将被中心化和范数化,因此它们的均值为零,方差为 1(当然,常数除外)。 MinMaxScaler
默认情况下会将您的功能置于 [0..1] 范围内。问题不是使用哪个缩放器,而是为什么要使用缩放器。在一般情况下,除非需要,否则您不想丢弃功能。
对于大多数真实数据集来说,信息保存在方差中的假设是不正确的,很多时候方差较低的特征与低信息特征并不对应。作为您的最终目标不是减少特征数量而是创建更好的分类算法,您不应该对中间目标进行过度优化。
关于python - 在删除低方差之前对数据进行归一化,会出错,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61159209/
我的应用程序上有一个抽屉式菜单,它在桌面上运行良好,但在任何移动设备上我都看到一个丑陋的卡顿。 在 header 中,我有一个 bool 值,在单击汉堡包时将其设置为 true/false,这会将 o
在CLRS书中,自上而下的heapify构建堆的复杂度为O(n)。也可以通过反复调用插入来建立堆,其最坏情况下的复杂度为nlg(n)。 我的问题是:对于后一种方法性能较差的原因,是否有任何见解? 我问
我在所有层和输出上使用 sigmoid,得到的最终错误率为 0.00012,但是当我使用理论上更好的 Relu 时,我得到了最差的结果。谁能解释为什么会发生这种情况?我正在使用一个非常简单的 2 层实
我想计算有多少人(百分比)在我的测试中表现比我差。 这是我想要的结果: student | vak | resultaat | percentielscore ---------+-------
令人惊讶的是,使用 PLINQ 并没有在我创建的一个小测试用例上产生好处;事实上,它比通常的 LINQ 还要糟糕。 测试代码如下: int repeatedCount = 10000000;
我正在开发一个高度基于 map 的应用程序,并且我正在使用 MBXMapKit 框架(基于 MapKit 构建)以便在我的 MapView 中显示自定义 Mapbox map 图 block 而不是默
这个问题在这里已经有了答案: Is it always better to use 'DbContext' instead of 'ObjectContext'? (1 个回答) 关闭 9 年前。
我正在尝试使用 FFmpeg 进行一些复杂的视频转码(例如连接多个文件)。为此,我一直在尝试使用 filter_complex,但我注意到我之前使用普通视频过滤器看到的质量略有下降。 为了仔细检查,我
我是 R 中并行计算的新手,想使用并行包来加速我的计算(这比下面的示例更复杂)。但是,与通常的 lapply 函数相比,使用 mclapply 函数的计算时间更长。 我在我的笔记本电脑上安装了一个全新
我正在尝试使用 BERT 解决文档排名问题。我的任务很简单。我必须对输入文档进行相似度排名。这里唯一的问题是我没有标签——所以它更像是一个定性分析。 我正在尝试一系列文档表示技术——主要是 word2
如何计算两点的差?例如:(5,7) - (2,3) = (3,4) using point = boost::geometry::model::point point p1 (2, 3); point
我是 ARKit 的新手,在检查了一些示例代码后,如 https://developer.apple.com/sample-code/wwdc/2017/PlacingObjects.zip我想知道是
社区。 我正在编写一些机器学习代码,将一些数据分类。 我尝试了不同的方法,但是当我使用SVM时,我遇到了这个问题。 我有一组简单的数据(3 个类别,6 个特征),当我使用具有固定参数(C=10、gam
我只是在查看不同问题的答案以了解更多信息。我看到一个answer这表示在 php 中编写 是不好的做法 for($i=0;$i
我正在编写一个界面,我必须在其中启动 4 个 http 请求才能获取一些信息。 我用两种方式实现了接口(interface): 使用顺序 file_get_contents。 使用多 curl 。 我
我想用随机数来愚弄一下,如果 haskell 中的随机生成器是否均匀分布,因此我在几次尝试后写了下面的程序(生成的列表导致堆栈溢出)。 module Main where import System.
我在 Tensorflow 中构建了一个 LSTM 分类器(使用 Python),现在我正在做一系列基准测试来衡量执行性能。基准测试代码加载在训练期间保存的模型并针对大量输入执行它。我有一个 Pyth
不久前,我重构了单元格渲染器组件以实现性能提升(我有一个巨大的表格)。我从功能性无状态组件重构为 PureComponent。例如: import React from 'react'; import
当我改变缓冲区的大小时,我得到了无法从 BufferedReader 解释的奇怪结果。 我曾强烈期望性能会随着缓冲区大小的增加而逐渐增加, yield 递减设置相当快,此后性能或多或少会持平。但看起来
我正在尝试为 1000 个正面+负面标签的 IMDB 评论 (txt_sentoken) 和 Java 的 weka API 构建一个基于朴素贝叶斯的分类器。 由于我不知道 StringToWordV
我是一名优秀的程序员,十分优秀!