- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我尝试加速计算放置在数组中的4d向量的平均值。这是我的代码:
#include <sys/time.h>
#include <sys/param.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <xmmintrin.h>
typedef float dot[4];
#define N 1000000
double gettime ()
{
struct timeval tv;
gettimeofday (&tv, 0);
return (double)tv.tv_sec + (0.000001 * (double)tv.tv_usec);
}
void calc_avg1 (dot res, const dot array[], int n)
{
int i,j;
memset (res, 0, sizeof (dot));
for (i = 0; i < n; i++)
{
for (j = 0; j<4; j++) res[j] += array[i][j];
}
for (j = 0; j<4; j++) res[j] /= n;
}
void calc_avg2 (dot res, const dot array[], int n)
{
int i;
__v4sf r = _mm_set1_ps (0.0);
for (i=0; i<n; i++) r += _mm_load_ps (array[i]);
r /= _mm_set1_ps ((float)n);
_mm_store_ps (res, r);
}
int main ()
{
void *space = malloc (N*sizeof(dot)+15);
dot *array = (dot*)(((unsigned long)space+15) & ~(unsigned long)15);
dot avg __attribute__((aligned(16)));
int i;
double time;
for (i = 0; i < N; i++)
{
array[i][0] = 1.0*random();
array[i][1] = 1.0*random();
array[i][2] = 1.0*random();
}
time = gettime();
calc_avg1 (avg, array, N);
time = gettime() - time;
printf ("%f\n%f %f %f\n", time, avg[0], avg[1], avg[2]);
time = gettime();
calc_avg2 (avg, array, N);
time = gettime() - time;
printf ("%f\n%f %f %f\n", time, avg[0], avg[1], avg[2]);
return 0;
}
calc_avg1
使用0到4的幼稚循环,而
calc_avg2
用SSE指令替换它们。我用clang 3.4编译此代码:
cc -O2 -o test test.c
0000000000400860 <calc_avg1>:
400860: 55 push %rbp
400861: 48 89 e5 mov %rsp,%rbp
400864: 85 d2 test %edx,%edx
400866: 0f 57 c0 xorps %xmm0,%xmm0
400869: 0f 11 07 movups %xmm0,(%rdi)
40086c: 7e 42 jle 4008b0 <calc_avg1+0x50>
40086e: 48 83 c6 0c add $0xc,%rsi
400872: 0f 57 c0 xorps %xmm0,%xmm0
400875: 89 d0 mov %edx,%eax
400877: 0f 57 c9 xorps %xmm1,%xmm1
40087a: 0f 57 d2 xorps %xmm2,%xmm2
40087d: 0f 57 db xorps %xmm3,%xmm3
400880: f3 0f 58 5e f4 addss -0xc(%rsi),%xmm3
400885: f3 0f 11 1f movss %xmm3,(%rdi)
400889: f3 0f 58 56 f8 addss -0x8(%rsi),%xmm2
40088e: f3 0f 11 57 04 movss %xmm2,0x4(%rdi)
400893: f3 0f 58 4e fc addss -0x4(%rsi),%xmm1
400898: f3 0f 11 4f 08 movss %xmm1,0x8(%rdi)
40089d: f3 0f 58 06 addss (%rsi),%xmm0
4008a1: f3 0f 11 47 0c movss %xmm0,0xc(%rdi)
4008a6: 48 83 c6 10 add $0x10,%rsi
4008aa: ff c8 dec %eax
4008ac: 75 d2 jne 400880 <calc_avg1+0x20>
4008ae: eb 0c jmp 4008bc <calc_avg1+0x5c>
4008b0: 0f 57 c0 xorps %xmm0,%xmm0
4008b3: 0f 57 c9 xorps %xmm1,%xmm1
4008b6: 0f 57 d2 xorps %xmm2,%xmm2
4008b9: 0f 57 db xorps %xmm3,%xmm3
4008bc: f3 0f 2a e2 cvtsi2ss %edx,%xmm4
4008c0: f3 0f 5e dc divss %xmm4,%xmm3
4008c4: f3 0f 11 1f movss %xmm3,(%rdi)
4008c8: f3 0f 5e d4 divss %xmm4,%xmm2
4008cc: f3 0f 11 57 04 movss %xmm2,0x4(%rdi)
4008d1: f3 0f 5e cc divss %xmm4,%xmm1
4008d5: f3 0f 11 4f 08 movss %xmm1,0x8(%rdi)
4008da: f3 0f 5e c4 divss %xmm4,%xmm0
4008de: f3 0f 11 47 0c movss %xmm0,0xc(%rdi)
4008e3: 5d pop %rbp
4008e4: c3 retq
4008e5: 66 66 2e 0f 1f 84 00 nopw %cs:0x0(%rax,%rax,1)
4008ec: 00 00 00 00
00000000004008f0 <calc_avg2>:
4008f0: 55 push %rbp
4008f1: 48 89 e5 mov %rsp,%rbp
4008f4: 85 d2 test %edx,%edx
4008f6: 0f 57 c0 xorps %xmm0,%xmm0
4008f9: 7e 10 jle 40090b <calc_avg2+0x1b>
4008fb: 89 d0 mov %edx,%eax
4008fd: 0f 1f 00 nopl (%rax)
400900: 0f 58 06 addps (%rsi),%xmm0
400903: 48 83 c6 10 add $0x10,%rsi
400907: ff c8 dec %eax
400909: 75 f5 jne 400900 <calc_avg2+0x10>
40090b: 66 0f 6e ca movd %edx,%xmm1
40090f: 66 0f 70 c9 00 pshufd $0x0,%xmm1,%xmm1
400914: 0f 5b c9 cvtdq2ps %xmm1,%xmm1
400917: 0f 5e c1 divps %xmm1,%xmm0
40091a: 0f 29 07 movaps %xmm0,(%rdi)
40091d: 5d pop %rbp
40091e: c3 retq
40091f: 90 nop
> ./test
0.004287
1073864320.000000 1074018048.000000 1073044224.000000
0.003661
1073864320.000000 1074018048.000000 1073044224.000000
float calc_avg1 (const float array[], int n)
{
int i;
float avg = 0;
for (i = 0; i < n; i++) avg += array[i];
return avg / n;
}
float calc_avg3 (const float array[], int n)
{
int i;
__v4sf r = _mm_set1_ps (0.0);
for (i=0; i<n; i+=4) r += _mm_load_ps (&(array[i]));
r = _mm_hadd_ps (r, r);
r = _mm_hadd_ps (r, r);
return r[0] / n;
}
0000000000400860 <calc_avg1>:
400860: 55 push %rbp
400861: 48 89 e5 mov %rsp,%rbp
400864: 85 d2 test %edx,%edx
400866: 0f 57 c0 xorps %xmm0,%xmm0
400869: 0f 11 07 movups %xmm0,(%rdi)
40086c: 7e 42 jle 4008b0 <calc_avg1+0x50>
40086e: 48 83 c6 0c add $0xc,%rsi
400872: 0f 57 c0 xorps %xmm0,%xmm0
400875: 89 d0 mov %edx,%eax
400877: 0f 57 c9 xorps %xmm1,%xmm1
40087a: 0f 57 d2 xorps %xmm2,%xmm2
40087d: 0f 57 db xorps %xmm3,%xmm3
400880: f3 0f 58 5e f4 addss -0xc(%rsi),%xmm3
400885: f3 0f 11 1f movss %xmm3,(%rdi)
400889: f3 0f 58 56 f8 addss -0x8(%rsi),%xmm2
40088e: f3 0f 11 57 04 movss %xmm2,0x4(%rdi)
400893: f3 0f 58 4e fc addss -0x4(%rsi),%xmm1
400898: f3 0f 11 4f 08 movss %xmm1,0x8(%rdi)
40089d: f3 0f 58 06 addss (%rsi),%xmm0
4008a1: f3 0f 11 47 0c movss %xmm0,0xc(%rdi)
4008a6: 48 83 c6 10 add $0x10,%rsi
4008aa: ff c8 dec %eax
4008ac: 75 d2 jne 400880 <calc_avg1+0x20>
4008ae: eb 0c jmp 4008bc <calc_avg1+0x5c>
4008b0: 0f 57 c0 xorps %xmm0,%xmm0
4008b3: 0f 57 c9 xorps %xmm1,%xmm1
4008b6: 0f 57 d2 xorps %xmm2,%xmm2
4008b9: 0f 57 db xorps %xmm3,%xmm3
4008bc: f3 0f 2a e2 cvtsi2ss %edx,%xmm4
4008c0: f3 0f 5e dc divss %xmm4,%xmm3
4008c4: f3 0f 11 1f movss %xmm3,(%rdi)
4008c8: f3 0f 5e d4 divss %xmm4,%xmm2
4008cc: f3 0f 11 57 04 movss %xmm2,0x4(%rdi)
4008d1: f3 0f 5e cc divss %xmm4,%xmm1
4008d5: f3 0f 11 4f 08 movss %xmm1,0x8(%rdi)
4008da: f3 0f 5e c4 divss %xmm4,%xmm0
4008de: f3 0f 11 47 0c movss %xmm0,0xc(%rdi)
4008e3: 5d pop %rbp
4008e4: c3 retq
4008e5: 66 66 2e 0f 1f 84 00 nopw %cs:0x0(%rax,%rax,1)
4008ec: 00 00 00 00
00000000004008d0 <calc_avg3>:
4008d0: 55 push %rbp
4008d1: 48 89 e5 mov %rsp,%rbp
4008d4: 31 c0 xor %eax,%eax
4008d6: 85 f6 test %esi,%esi
4008d8: 0f 57 c0 xorps %xmm0,%xmm0
4008db: 7e 0f jle 4008ec <calc_avg3+0x1c>
4008dd: 0f 1f 00 nopl (%rax)
4008e0: 0f 58 04 87 addps (%rdi,%rax,4),%xmm0
4008e4: 48 83 c0 04 add $0x4,%rax
4008e8: 39 f0 cmp %esi,%eax
4008ea: 7c f4 jl 4008e0 <calc_avg3+0x10>
4008ec: 66 0f 70 c8 01 pshufd $0x1,%xmm0,%xmm1
4008f1: f3 0f 58 c8 addss %xmm0,%xmm1
4008f5: 66 0f 70 d0 03 pshufd $0x3,%xmm0,%xmm2
4008fa: 0f 12 c0 movhlps %xmm0,%xmm0
4008fd: f3 0f 58 c1 addss %xmm1,%xmm0
400901: f3 0f 58 c2 addss %xmm2,%xmm0
400905: 0f 57 c9 xorps %xmm1,%xmm1
400908: f3 0f 2a ce cvtsi2ss %esi,%xmm1
40090c: f3 0f 5e c1 divss %xmm1,%xmm0
400910: 5d pop %rbp
400911: c3 retq
400912: 66 66 66 66 66 2e 0f nopw %cs:0x0(%rax,%rax,1)
400919: 1f 84 00 00 00 00 00
最佳答案
抱歉,这个答案有点冗长而混乱。我运行了一些基准测试,但是在考虑了其他尝试之后,我花了很长时间来编辑早期的内容。
您的工作集为15.25MiB(16MB)。通常,为了对这样的例程进行基准测试,您将多次平均较小的缓冲区,因此它适合高速缓存。您不会在慢速版本和快速版本之间看到太多差异,因为差异被内存瓶颈所隐藏。calc_avg1
根本不会自动矢量化(请注意addss
。ss
表示标量,单精度,而不是addps
(压缩的单精度))。我认为即使内联到main中也无法自动矢量化,因为无法确定在第4个矢量位置中没有NaN
,这会导致标量代码没有的FP异常。我尝试使用gcc 4.9.2 -O3 -march=native -ffast-math
和clang-3.5为Sandybridge编译它,但是两者都没有运气。
即使如此,内联到main
的版本运行速度也稍慢,因为内存是瓶颈。当访问主内存时,32位负载几乎可以跟上128b负载。 (但是,非内联版本会很糟糕:每个+=
结果都存储到res
数组中,因为循环直接累积到可能有其他引用的内存中。因此,它必须使每个操作都可见商店。这是您为其发布反汇编的版本,BTW。整理出main的哪个部分是通过-S -fverbose-asm
进行编译的。)
令人失望的是,clang和gcc无法自动将__v4sf
从4宽AVX矢量化为8宽。
在将for (int i=0; i<4000 ; i++)
包裹在calc_avgX
的调用周围并将N
减少到10k之后,gcc -O3
将avg1的内部内部循环变为:
400690: c5 f8 10 08 vmovups (%rax),%xmm1
400694: 48 83 c0 20 add $0x20,%rax
400698: c4 e3 75 18 48 f0 01 vinsertf128 $0x1,-0x10(%rax),%ymm1,%ymm1
40069f: c5 fc 58 c1 vaddps %ymm1,%ymm0,%ymm0
4006a3: 48 39 d8 cmp %rbx,%rax
4006a6: 75 e8 jne 400690 <main+0xe0>
$ (get CPU to max-turbo frequency) && time ./a.out
0.016515
1071570752.000000 1066917696.000000 1073897344.000000
0.032875
1071570944.000000 1066916416.000000 1073895680.000000
vaddps
,这是处理适用于L2高速缓存的数据集的瓶颈。
main
的版本。可调用版本仍然仅是标量。另请注意,只有gcc对此进行了管理。铛3.5没有。也许gcc知道它将以返回零缓冲区的方式使用
malloc
(所以它不必担心第4个元素中的
NaN
)?
avg1
并不慢感到惊讶。
N=10000
,重复计数= 40k。
3.3GHz SNB i5 2500k, max turbo = 3.8GHz.
avg1: 0.350422s: clang -O3 -march=native (not vectorized. loop of 6 scalar addss with memory operands)
avg2: 0.320173s: clang -O3 -march=native
avg1: 0.497040s: clang -O3 -march=native -ffast-math (haven't looked at asm to see what happened)
avg1: 0.160374s: gcc -O3 -march=native (256b addps, with 2 128b loads)
avg2: 0.321028s: gcc -O3 -march=native (128b addps with a memory operand)
avg2: ~0.16: clang, unrolled with 2 dependency chains to hide latency (see below).
avg2: ~0.08: unrolled with 4 dep chains
avg2: ~0.04: in theory unrolled-by-4 with 256b AVX. I didn't try unrolling the one gcc auto-vectorized with 256b addps
avg1
代码与
avg2
保持一致。也许循环携带的依赖链是更大的瓶颈?
perf
显示的是clang的非矢量化
avg1
每个周期1.47 insns,这很可能会使端口1上的FP加法器饱和(大多数循环指令都加了)。
avg2
与内存操作数一起使用的
addps
每个周期仅获得0.58 insns。将数组大小再减小10倍至
N=1000
,每个周期可获得0.60 insns,这可能是因为在序言/结尾中花费了更多时间。我认为循环承载的依赖链存在一个严重的问题。 clang将循环展开4,但仅使用单个累加器。该循环有7条指令,可解码为10微指令。 (每个
vaddps
为2,因为它与具有2寄存器寻址模式的内存操作数一起使用,防止了微融合。
cmp
和
jne
宏保险丝)。
http://www.brendangregg.com/perf.html表示
perf
的
UOPS_DISPATCHED.CORE
事件是
r2b1
,因此:
$ perf stat -d -e cycles,instructions,r2b1 ./a.out
0.031793
1053298112.000000 1052673664.000000 1116960256.000000
Performance counter stats for './a.out':
118,453,541 cycles
71,181,299 instructions # 0.60 insns per cycle
102,025,443 r2b1 # this is uops, but perf doesn't have a nice name for it
40,256,019 L1-dcache-loads
21,254 L1-dcache-load-misses # 0.05% of all L1-dcache hits
9,588 LLC-loads
0 LLC-load-misses:HG # 0.00% of all LL-cache hits
0.032276233 seconds time elapsed
for (i=0; i<n-1; i+=2) { // TODO: make sure the loop end condition is correct
r0 += _mm_load_ps (array[i]);
r1 += _mm_load_ps (array[i+1]);
}
r0 += r1;
vaddps -0x30(%rcx),%xmm4,%xmm4
(和类似值),2x
add
,
cmp
,
jl
。这种形式的
vaddps
应该是微熔丝,但是我仍然看到比指令更多的微指令,因此我想
r2b1
会计数未融合的微指令。 (Linux
perf
没有针对特定平台的硬件事件的出色文档)。再次启动
N
,以确保它是最内部的循环完全控制所有计数,我看到uop:insn的比值为1.39,与8 insns,11 uops(1.375)匹配得很好(将
vaddps
计为2 ,但将
cmp
+
jl
视为一)。我找到了
http://www.bnikolic.co.uk/blog/hpc-prof-events.html,其中包含受支持的perf事件的完整列表,包括它们对Sandybridge的代码。 (以及有关如何为任何其他CPU转储表的说明)。 (在每个块中查找
Code:
行。您需要一个umask字节,然后是代码,作为
perf
的arg。)
# a.out does only avg2, as an unrolled-by-4 version.
$ perf stat -d -e cycles,instructions,r14a1,r2b1,r10e,r2c2,r1c2 ./a.out
0.011331
1053298752.000000 1052674496.000000 1116959488.000000
Performance counter stats for './a.out':
42,250,312 cycles [34.11%]
56,103,429 instructions # 1.33 insns per cycle
20,864,416 r14a1 # UOPS_DISPATCHED_PORT: 0x14=port2&3 loads
111,943,380 r2b1 # UOPS_DISPATCHED: (2->umask 00 -> this core, any thread).
72,208,772 r10e # UOPS_ISSUED: fused-domain
71,422,907 r2c2 # UOPS_RETIRED: retirement slots used (fused-domain)
111,597,049 r1c2 # UOPS_RETIRED: ALL (unfused-domain)
0 L1-dcache-loads
18,470 L1-dcache-load-misses # 0.00% of all L1-dcache hits
5,717 LLC-loads [66.05%]
0 LLC-load-misses:HG # 0.00% of all LL-cache hits
0.011920301 seconds time elapsed
sub $-128, %rsi
而不是add,因为-128适合
imm8
,但+128不适合。因此,我想展开4足以使FP添加端口饱和。
vaddps
。您说您发现它们的速度差异更大,但是您是否可能使用较小的缓冲区进行测试?这将导致矢量代码与非矢量的速度大大提高。
关于c - 用SSE计算4d vector 平均值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31333235/
关闭。这个问题需要debugging details .它目前不接受答案。 编辑问题以包含 desired behavior, a specific problem or error, and th
我试图用这种形式简单地获取数字 28 integer+space+integer+integer+space+integer我试过这个正则表达式 \\s\\d\\d\\s 但我得到了两个数字11 和
最近一直在学习D语言。我一直对运行时感到困惑。 从我能收集到的关于它的信息中,(这不是很多)我知道它是一种有助于 D 的一些特性的运行时。像垃圾收集一样,它与您自己的程序一起运行。但是既然 D 是编译
想问一下这两个正则表达式有区别吗? \d\d\d 与 \d{3} 我已经在我的本地机器上使用 Java 和 Windows 操作系统对此进行了测试,两者都工作正常并且结果相同。但是,当在 linux
我正在学习 Go,而且我坚持使用 Go 之旅(exercise-stringer.go:https://tour.golang.org/methods/7)。 这是一些代码: type IPAddr
我在Java正则表达式中发现了一段令我困惑的代码: Pattern.compile( "J.*\\d[0-35-9]-\\d\\d-\\d\\d" ); 要编译的字符串是: String string
我在 ruby 代码上偶然发现了这个。我知道\d{4})\/(\d\d)\/(\d\d)\/(.*)/是什么意思,但是\1-\2-\3-\4 是什么意思? 最佳答案 \1-\2-\3-\4 是 b
我一直在努力解决这个问题,这让我很恼火。我了解 D 运行时库。它是什么,它做什么。我也明白你可以在没有它的情况下编译 D 应用程序。就像 XoMB 所做的那样。好吧,XoMB 定义了自己的运行时,但是
我有两个列表列表,子列表代表路径。我想找到所有路径。 List> pathList1 List> pathList2 当然是天真的解决方案: List> result = new ArrayList>
我需要使用 Regex 格式化一个字符串,该字符串包含数字、字母 a-z 和 A-Z,同时还包含破折号和空格。 从用户输入我有02-219 8 53 24 输出应该是022 198 53 24 我正在
目标是达到与this C++ example相同的效果: 避免创建临时文件。我曾尝试将 C++ 示例翻译为 D,但没有成功。我也尝试过不同的方法。 import std.datetime : benc
tl;dr:你好吗perfect forwarding在 D? 该链接有一个很好的解释,但例如,假设我有这个方法: void foo(T)(in int a, out int b, ref int c
有什么方法可以在 D 中使用abstract auto 函数吗? 如果我声明一个类如下: class MyClass { abstract auto foo(); } 我收到以下错误: mai
有没有人为内存中重叠的数组切片实现交集?算法在没有重叠时返回 []。 当 pretty-print (使用重叠缩进)内存中重叠的数组切片时,我想要这个。 最佳答案 如果您确定它们是数组,那么只需取 p
我已经开始学习 D,但我在使用 Andrei Alexandrescu 所著的 The D Programming Language 一书中提供的示例时遇到了一些麻烦。由于 int 和 ulong 类
如何创建一个不可变的类? 我的目标是创建一个实例始终不可变的类。现在我只是用不可变的方法和构造函数创建了一个“可变”类。我将其称为 mData,m 表示可变。然后我创建一个别名 alias immut
不久前我买了《The D Programming Language》。好书,很有教育意义。但是,我在尝试编译书中列出的语言功能时遇到了麻烦:扩展函数。 在这本书中,Andrei 写了任何可以像这样调用
我在 D http://www.digitalmars.com/d/2.0/lazy-evaluation.html 中找到了函数参数的惰性求值示例 我想知道如何在 D 中实现可能的无限数据结构,就像
这个问题在这里已经有了答案: 12 年前关闭。 Possible Duplicate: Could anyone explain these undefined behaviors (i = i++
当前是否可以跨模块扫描/查询/迭代具有某些属性的所有函数(或类)? 例如: source/packageA/something.d: @sillyWalk(10) void doSomething()
我是一名优秀的程序员,十分优秀!