gpt4 book ai didi

anaconda - 我经常得到 ResolvePackageNotFound

转载 作者:行者123 更新时间:2023-12-05 01:32:09 28 4
gpt4 key购买 nike

当我输入 conda env create -f environment.yml

我不断得到

Collecting package metadata (repodata.json): done Solving environment: failed

ResolvePackageNotFound:
- tk==8.6.8=hbc83047_0
- zlib==1.2.11=h7b6447c_3
- av==8.0.2=py37h06622b3_4
- lame==3.100=h7f98852_1001
- xz==5.2.4=h14c3975_4
- mkl_random==1.0.2=py37hd81dba3_0
- x264==1!152.20180806=h14c3975_0
- numpy-base==1.16.4=py37hde5b4d6_0
- certifi==2020.12.5=py37h06a4308_0
- _openmp_mutex==4.5=1_llvm
- llvm-openmp==11.0.0=hfc4b9b4_1
- freetype==2.9.1=h8a8886c_1
- scikit-learn==0.22.1=py37hd81dba3_0
- libgfortran-ng==7.3.0=hdf63c60_0
- readline==7.0=h7b6447c_5
- mkl_fft==1.0.12=py37ha843d7b_0
- libpng==1.6.37=hbc83047_0
- libedit==3.1.20181209=hc058e9b_0
- libffi==3.2.1=hd88cf55_4
- nettle==3.6=he412f7d_0
- gnutls==3.6.13=h85f3911_1
- python==3.7.3=h0371630_0
- gmp==6.2.1=h58526e2_0
- _libgcc_mutex==0.1=conda_forge
- libgcc-ng==9.3.0=h5dbcf3e_17
- mkl-service==2.3.0=py37he904b0f_0
- ffmpeg==4.3.1=h3215721_1
- openh264==2.1.1=h8b12597_0
- mkl==2019.4=243
- numpy==1.16.4=py37h7e9f1db_0
- ca-certificates==2020.12.8=h06a4308_0
- libiconv==1.16=h516909a_0
- intel-openmp==2019.4=243
- libstdcxx-ng==9.1.0=hdf63c60_0
- zstd==1.3.7=h0b5b093_0
- ncurses==6.1=he6710b0_1
- jpeg==9b=h024ee3a_2
- openssl==1.1.1i=h27cfd23_0
- bzip2==1.0.8=h7f98852_4
- sqlite==3.28.0=h7b6447c_0
- libtiff==4.0.10=h2733197_2

我该怎么办?

我的 yml 文件是:

name: StyleFlow
channels:
- anaconda
- defaults
- conda-forge
dependencies:
- _libgcc_mutex=0.1=conda_forge
- _openmp_mutex=4.5=1_llvm
- av=8.0.2=py37h06622b3_4
- blas=1.0=mkl
- bzip2=1.0.8=h7f98852_4
- ca-certificates=2020.12.8=h06a4308_0
- certifi=2020.12.5=py37h06a4308_0
- ffmpeg=4.3.1=h3215721_1
- freetype=2.9.1=h8a8886c_1
- gmp=6.2.1=h58526e2_0
- gnutls=3.6.13=h85f3911_1
- intel-openmp=2019.4=243
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- lame=3.100=h7f98852_1001
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=9.3.0=h5dbcf3e_17
- libgfortran-ng=7.3.0=hdf63c60_0
- libiconv=1.16=h516909a_0
- libpng=1.6.37=hbc83047_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.0.10=h2733197_2
- llvm-openmp=11.0.0=hfc4b9b4_1
- mkl=2019.4=243
- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.0.12=py37ha843d7b_0
- mkl_random=1.0.2=py37hd81dba3_0
- natsort=6.0.0=py_0
- ncurses=6.1=he6710b0_1
- nettle=3.6=he412f7d_0
- numpy=1.16.4=py37h7e9f1db_0
- numpy-base=1.16.4=py37hde5b4d6_0
- olefile=0.46=py37_0
- openh264=2.1.1=h8b12597_0
- openssl=1.1.1i=h27cfd23_0
- pip=19.1.1=py37_0
- python=3.7.3=h0371630_0
- python_abi=3.7=1_cp37m
- readline=7.0=h7b6447c_5
- scikit-learn=0.22.1=py37hd81dba3_0
- setuptools=41.0.1=py37_0
- sqlite=3.28.0=h7b6447c_0
- tk=8.6.8=hbc83047_0
- wheel=0.33.4=py37_0
- x264=1!152.20180806=h14c3975_0
- xz=5.2.4=h14c3975_4
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- absl-py==0.7.1
- appdirs==1.4.4
- astor==0.8.0
- astunparse==1.6.3
- attrs==19.1.0
- backcall==0.1.0
- bleach==3.1.0
- cachetools==4.1.0
- cffi==1.12.3
- chardet==3.0.4
- cloudpickle==1.2.1
- cycler==0.10.0
- cytoolz==0.9.0.1
- dask==2.1.0
- decorator==4.4.0
- defusedxml==0.6.0
- deprecated==1.2.6
- dill==0.2.9
- dlib==19.21.0
- dominate==2.3.5
- easydict==1.9
- entrypoints==0.3
- gast==0.2.2
- google-auth==1.14.3
- google-auth-oauthlib==0.4.1
- google-pasta==0.2.0
- grpcio==1.22.0
- h5py==2.10.0
- helpdev==0.6.10
- idna==2.8
- imageio==2.5.0
- importlib-metadata==0.18
- imutils==0.5.3
- ipykernel==5.1.1
- ipython==7.6.0
- ipython-genutils==0.2.0
- ipywidgets==7.4.2
- jedi==0.13.3
- jinja2==2.10.1
- jsonschema==3.0.1
- jupyter==1.0.0
- jupyter-client==5.2.4
- jupyter-console==6.0.0
- jupyter-core==4.5.0
- keras==2.2.4
- keras-applications==1.0.8
- keras-preprocessing==1.1.0
- kiwisolver==1.1.0
- mako==1.1.2
- markdown==3.1.1
- markupsafe==1.1.1
- matplotlib==3.1.0
- mistune==0.8.4
- nbconvert==5.5.0
- nbformat==4.4.0
- networkx==2.3
- notebook==5.7.8
- oauthlib==3.1.0
- opencv-python==4.1.0.25
- opt-einsum==3.2.1
- pandocfilters==1.4.2
- parso==0.5.0
- pexpect==4.7.0
- pickleshare==0.7.5
- pillow==6.0.0
- prometheus-client==0.7.1
- prompt-toolkit==2.0.9
- protobuf==3.8.0
- psutil==5.6.3
- ptyprocess==0.6.0
- pyasn1==0.4.8
- pyasn1-modules==0.2.8
- pycparser==2.19
- pycuda==2019.1.2
- pygments==2.4.2
- pyparsing==2.4.0
- pyqt5==5.13.0
- pyqt5-sip==4.19.18
- pyrsistent==0.14.11
- pyside2==5.13.0
- python-dateutil==2.8.0
- pytools==2020.1
- pytz==2019.1
- pywavelets==1.0.3
- pyyaml==5.1.1
- pyzmq==18.0.0
- qdarkgraystyle==1.0.2
- qdarkstyle==2.7
- qtconsole==4.5.1
- requests==2.22.0
- requests-oauthlib==1.3.0
- rsa==4.0
- scikit-image==0.15.0
- scikit-video==1.1.11
- scipy==1.2.1
- send2trash==1.5.0
- shiboken2==5.13.0
- six==1.12.0
- tensorboard==1.15.0
- tensorboard-plugin-wit==1.6.0.post3
- tensorflow-estimator==1.15.1
- tensorflow-gpu==1.15.0
- termcolor==1.1.0
- terminado==0.8.2
- testpath==0.4.2
- toolz==0.9.0
- torch==1.1.0
- torchdiffeq==0.0.1
- torchvision==0.3.0
- tornado==6.0.3
- tqdm==4.32.1
- traitlets==4.3.2
- urllib3==1.25.3
- wcwidth==0.1.7
- webencodings==0.5.1
- werkzeug==0.15.4
- widgetsnbextension==3.4.2
- wrapt==1.11.2
- zipp==0.5.2

最佳答案

Conda 不适用于大型环境,在大型环境中所有内容都固定到特定版本(与其他以固定所有内容为标准的生态系统相反)。 conda env export 的结果,可能就是这样,这里还包括内部版本号,对于安装正确版本的软件。它非常适合科学工作的可重复性(需要知道所有内容的特定版本和构建),但不适合安装软件(版本具有很大的灵 active ,可以与任何包一起使用)。

我首先删除构建引脚(删除每行中第二个 = 之后的所有内容),以便仅固定版本。之后,我将开始删除版本图钉。

关于anaconda - 我经常得到 ResolvePackageNotFound,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/65735532/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com