gpt4 book ai didi

python - 使用 C++ 解析 ONNX 模型。使用 C++ 从 onnx 模型中提取层、输入和输出形状

转载 作者:行者123 更新时间:2023-12-05 01:30:12 27 4
gpt4 key购买 nike

我正在尝试从 onnx 模型中提取输入层、输出层及其形状等数据。我知道有 python 接口(interface)可以做到这一点。我想做类似的事情 code但在 C++ 中。我还粘贴了链接中的代码。我已经在 python 中尝试过了,它对我有用。我想知道是否有 C++ API 可以做同样的事情。

import onnx

model = onnx.load(r"model.onnx")

# The model is represented as a protobuf structure and it can be accessed
# using the standard python-for-protobuf methods

# iterate through inputs of the graph
for input in model.graph.input:
print (input.name, end=": ")
# get type of input tensor
tensor_type = input.type.tensor_type
# check if it has a shape:
if (tensor_type.HasField("shape")):
# iterate through dimensions of the shape:
for d in tensor_type.shape.dim:
# the dimension may have a definite (integer) value or a symbolic identifier or neither:
if (d.HasField("dim_value")):
print (d.dim_value, end=", ") # known dimension
elif (d.HasField("dim_param")):
print (d.dim_param, end=", ") # unknown dimension with symbolic name
else:
print ("?", end=", ") # unknown dimension with no name
else:
print ("unknown rank", end="")
print()

我也是 c++ 的新手,请帮助我。

最佳答案

ONNX 格式本质上是一个 protobuf , 所以它可以在协议(protocol)编译器支持的任何语言中打开。

如果是 C++

  1. 获取onnx原型(prototype)文件(onnx repo)
  2. protoc --cpp_out= 编译它。 onnx.proto3 命令。它将生成onnx.proto3.pb.cconnx.proto3.pb.h 文件
  3. 链接 protobuf 库(可能是 protobuf-lite),生成的 cpp 文件和以下代码:
#include <fstream>
#include <cassert>

#include "onnx.proto3.pb.h"

void print_dim(const ::onnx::TensorShapeProto_Dimension &dim)
{
switch (dim.value_case())
{
case onnx::TensorShapeProto_Dimension::ValueCase::kDimParam:
std::cout << dim.dim_param();
break;
case onnx::TensorShapeProto_Dimension::ValueCase::kDimValue:
std::cout << dim.dim_value();
break;
default:
assert(false && "should never happen");
}
}

void print_io_info(const ::google::protobuf::RepeatedPtrField< ::onnx::ValueInfoProto > &info)
{
for (auto input_data: info)
{
auto shape = input_data.type().tensor_type().shape();
std::cout << " " << input_data.name() << ":";
std::cout << "[";
if (shape.dim_size() != 0)
{
int size = shape.dim_size();
for (int i = 0; i < size - 1; ++i)
{
print_dim(shape.dim(i));
std::cout << ", ";
}
print_dim(shape.dim(size - 1));
}
std::cout << "]\n";
}
}

int main(int argc, char **argv)
{
std::ifstream input("mobilenet.onnx", std::ios::ate | std::ios::binary); // open file and move current position in file to the end

std::streamsize size = input.tellg(); // get current position in file
input.seekg(0, std::ios::beg); // move to start of file

std::vector<char> buffer(size);
input.read(buffer.data(), size); // read raw data

onnx::ModelProto model;
model.ParseFromArray(buffer.data(), size); // parse protobuf

auto graph = model.graph();

std::cout << "graph inputs:\n";
print_io_info(graph.input());

std::cout << "graph outputs:\n";
print_io_info(graph.output());
return 0;
}

关于python - 使用 C++ 解析 ONNX 模型。使用 C++ 从 onnx 模型中提取层、输入和输出形状,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/67301475/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com