gpt4 book ai didi

airflow - 使用 Airflow 的 DataflowPythonOperator 安排数据流作业时出错

转载 作者:行者123 更新时间:2023-12-05 01:14:29 27 4
gpt4 key购买 nike

我正在尝试使用 airflow 的 DataflowPythonOperator 安排数据流作业。这是我的 dag 运算符:

test = DataFlowPythonOperator(
task_id = 'my_task',
py_file = 'path/my_pyfile.py',
gcp_conn_id='my_conn_id',
dataflow_default_options={
"project": 'my_project',
"runner": "DataflowRunner",
"job_name": 'my_job',
"staging_location": 'gs://my/staging',
"temp_location": 'gs://my/temping',
"requirements_file": 'path/requirements.txt'
}
)

gcp_conn_id 已经设置好,它可以工作了。并且错误显示数据流失败并返回代码 1。完整日志如下。

[2018-07-05 18:24:39,928] {gcp_dataflow_hook.py:108} INFO - Start waiting for DataFlow process to complete.
[2018-07-05 18:24:40,049] {base_task_runner.py:95} INFO - Subtask:
[2018-07-05 18:24:40,049] {models.py:1433} ERROR - DataFlow failed with return code 1
[2018-07-05 18:24:40,050] {base_task_runner.py:95} INFO - Subtask: Traceback (most recent call last):
[2018-07-05 18:24:40,050] {base_task_runner.py:95} INFO - Subtask: File "/usr/local/lib/python2.7/dist-packages/airflow/models.py", line 1390, in run
[2018-07-05 18:24:40,050] {base_task_runner.py:95} INFO - Subtask: result = task_copy.execute(context=context)
[2018-07-05 18:24:40,050] {base_task_runner.py:95} INFO - Subtask: File "/usr/local/lib/python2.7/dist-packages/airflow/contrib/operators/dataflow_operator.py", line 182, in execute
[2018-07-05 18:24:40,050] {base_task_runner.py:95} INFO - Subtask: self.py_file, self.py_options)
[2018-07-05 18:24:40,050] {base_task_runner.py:95} INFO - Subtask: File "/usr/local/lib/python2.7/dist-packages/airflow/contrib/hooks/gcp_dataflow_hook.py", line 152, in start_python_dataflow
[2018-07-05 18:24:40,050] {base_task_runner.py:95} INFO - Subtask: task_id, variables, dataflow, name, ["python"] + py_options)
[2018-07-05 18:24:40,051] {base_task_runner.py:95} INFO - Subtask: File "/usr/local/lib/python2.7/dist-packages/airflow/contrib/hooks/gcp_dataflow_hook.py", line 138, in _start_dataflow
[2018-07-05 18:24:40,051] {base_task_runner.py:95} INFO - Subtask: _Dataflow(cmd).wait_for_done()
[2018-07-05 18:24:40,051] {base_task_runner.py:95} INFO - Subtask: File "/usr/local/lib/python2.7/dist-packages/airflow/contrib/hooks/gcp_dataflow_hook.py", line 119, in wait_for_done
[2018-07-05 18:24:40,051] {base_task_runner.py:95} INFO - Subtask: self._proc.returncode))
[2018-07-05 18:24:40,051] {base_task_runner.py:95} INFO - Subtask: Exception: DataFlow failed with return code 1

gcp_dataflow_hook.py 似乎有问题,除此之外没有更多信息。有什么方法可以解决这个问题吗?有没有 DataflowPythonOperator 的例子?(到目前为止我找不到任何用例)

最佳答案

我没有收到相同的错误消息,但我认为这可能有所帮助。 python Dataflow runner 似乎以一种不影响独立 Dataflow 作业但无法由 DataFlowPythonOperator python airflow 类正确处理的奇怪方式终止。我正在提交工单,但这里有一个解决方法可以解决我的问题。重要的!补丁必须应用于数据流作业而不是 Airflow 作业。

在 Dataflow 作业的顶部添加以下导入

import threading
import time
import types
from apache_beam.runners.runner import PipelineState

接下来在您的数据流代码上方添加以下内容。这主要是从主要的 ~dataflow.dataflow_runner 类中剪切和粘贴的,带有注释编辑

def local_poll_for_job_completion(runner, result, duration):
"""Polls for the specified job to finish running (successfully or not).
Updates the result with the new job information before returning.
Args:
runner: DataflowRunner instance to use for polling job state.
result: DataflowPipelineResult instance used for job information.
duration (int): The time to wait (in milliseconds) for job to finish.
If it is set to :data:`None`, it will wait indefinitely until the job
is finished.
"""
last_message_time = None
current_seen_messages = set()

last_error_rank = float('-inf')
last_error_msg = None
last_job_state = None
# How long to wait after pipeline failure for the error
# message to show up giving the reason for the failure.
# It typically takes about 30 seconds.
final_countdown_timer_secs = 50.0
sleep_secs = 5.0

# Try to prioritize the user-level traceback, if any.
def rank_error(msg):
if 'work item was attempted' in msg:
return -1
elif 'Traceback' in msg:
return 1
return 0

if duration:
start_secs = time.time()
duration_secs = duration // 1000

job_id = result.job_id()
keep_checking = True ### Changed here!!!
while keep_checking: ### Changed here!!!
response = runner.dataflow_client.get_job(job_id)
# If get() is called very soon after Create() the response may not contain
# an initialized 'currentState' field.
logging.info("Current state: " + str(response.currentState))
# Stop looking if the job is not terminating normally
if str(response.currentState) in ( ### Changed here!!!
'JOB_STATE_DONE', ### Changed here!!!
'JOB_STATE_CANCELLED', ### Changed here!!!
# 'JOB_STATE_UPDATED',
'JOB_STATE_DRAINED', ### Changed here!!!
'JOB_STATE_FAILED'): ### Changed here!!!
keep_checking = False ### Changed here!!!
break
if response.currentState is not None:
if response.currentState != last_job_state:
logging.info('Job %s is in state %s', job_id, response.currentState)
last_job_state = response.currentState
if str(response.currentState) != 'JOB_STATE_RUNNING':
# Stop checking for new messages on timeout, explanatory
# message received, success, or a terminal job state caused
# by the user that therefore doesn't require explanation.
if (final_countdown_timer_secs <= 0.0
or last_error_msg is not None
or str(response.currentState) == 'JOB_STATE_UPDATED'): ### Changed here!!!
keep_checking = False ### Changed here!!!
break

# Check that job is in a post-preparation state before starting the
# final countdown.
if (str(response.currentState) not in (
'JOB_STATE_PENDING', 'JOB_STATE_QUEUED')):
# The job has failed; ensure we see any final error messages.
sleep_secs = 1.0 # poll faster during the final countdown
final_countdown_timer_secs -= sleep_secs

time.sleep(sleep_secs)

# Get all messages since beginning of the job run or since last message.
page_token = None
while True:
messages, page_token = runner.dataflow_client.list_messages(
job_id, page_token=page_token, start_time=last_message_time)
for m in messages:
message = '%s: %s: %s' % (m.time, m.messageImportance, m.messageText)

if not last_message_time or m.time > last_message_time:
last_message_time = m.time
current_seen_messages = set()

if message in current_seen_messages:
# Skip the message if it has already been seen at the current
# time. This could be the case since the list_messages API is
# queried starting at last_message_time.
continue
else:
current_seen_messages.add(message)
# Skip empty messages.
if m.messageImportance is None:
continue
logging.info(message)
if str(m.messageImportance) == 'JOB_MESSAGE_ERROR':
if rank_error(m.messageText) >= last_error_rank:
last_error_rank = rank_error(m.messageText)
last_error_msg = m.messageText
if not page_token:
break

if duration:
passed_secs = time.time() - start_secs
if passed_secs > duration_secs:
logging.warning('Timing out on waiting for job %s after %d seconds',
job_id, passed_secs)
break

result._job = response
runner.last_error_msg = last_error_msg


def local_is_in_terminal_state(self):
logging.info("Current Dataflow job state: " + str(self.state))
logging.info("Current has_job: " + str(self.has_job))
if self.state in ('DONE', 'CANCELLED', 'DRAINED', 'FAILED'):
return True
else:
return False


class DataflowRuntimeException(Exception):
"""Indicates an error has occurred in running this pipeline."""

def __init__(self, msg, result):
super(DataflowRuntimeException, self).__init__(msg)
self.result = result


def local_wait_until_finish(self, duration=None):
logging.info("!!!!!!!!!!!!!!!!You are in a Monkey Patch!!!!!!!!!!!!!!!!")
if not local_is_in_terminal_state(self): ### Changed here!!!
if not self.has_job:
raise IOError('Failed to get the Dataflow job id.')

# DataflowRunner.poll_for_job_completion(self._runner, self, duration)
thread = threading.Thread(
target=local_poll_for_job_completion, ### Changed here!!!
args=(self._runner, self, duration))

# Mark the thread as a daemon thread so a keyboard interrupt on the main
# thread will terminate everything. This is also the reason we will not
# use thread.join() to wait for the polling thread.
thread.daemon = True
thread.start()
while thread.isAlive():
time.sleep(5.0)

terminated = local_is_in_terminal_state(self) ### Changed here!!!
logging.info("Terminated state: " + str(terminated))
# logging.info("duration: " + str(duration))
# assert duration or terminated, ( ### Changed here!!!
# 'Job did not reach to a terminal state after waiting indefinitely.') ### Changed here!!!

assert terminated, "Timed out after duration: " + str(duration) ### Changed here!!!

else: ### Changed here!!!
assert False, "local_wait_till_finish failed at the start" ### Changed here!!!

if self.state != PipelineState.DONE:
# TODO(BEAM-1290): Consider converting this to an error log based on
# theresolution of the issue.
raise DataflowRuntimeException(
'Dataflow pipeline failed. State: %s, Error:\n%s' %
(self.state, getattr(self._runner, 'last_error_msg', None)), self)

return self.state

然后当您启动管道时使用约定(不是 'with beam.Pipeline(options=pipeline_options) p:' 版本)

p = beam.Pipeline(options=pipeline_options)

最后,当您的管道已构建时,请使用以下内容

result = p.run()
# Monkey patch to better handle termination
result.wait_until_finish = types.MethodType(local_wait_until_finish, result)
result.wait_until_finish()

注意:如果您像我使用 1.10 补丁文件一样运行 airflow 服务器 v1.9,此修复程序仍然无法解决问题。 _Dataflow.wait_for_done 的补丁文件函数没有返回 job_id,它也需要。补丁的补丁比上面的差。如果可以升级。如果您不能将以下代码作为 header 粘贴到包含最新文件的 Dag 脚本中,它应该可以工作。 airflow/contrib/hooks/gcp_api_base_hook.py、airflow/contrib/hooks/gcp_dataflow_hook.py 和 airflow/contrib/operators/dataflow_operator.py

关于airflow - 使用 Airflow 的 DataflowPythonOperator 安排数据流作业时出错,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51198343/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com