- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试为相关性提供热图,但我意识到有些是错误的。
下面是我的热图。如您所见,该操作的编号没有出现。
这是我的数据框
all_gen_cols = steamUniqueTitleGenre[['action', 'adventure','casual', 'indie','massively_multiplayer','rpg','racing','simulation','sports','strategy']]
action adventure casual indie massively_multiplayer rpg racing simulation sports strategy
0 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 1
3 1 1 0 0 1 0 0 0 0 0
4 1 0 0 0 1 1 0 0 0 1
这是生成热图的代码
def plot_correlation_heatmap(df):
corr = df.corr()
sb.set(style='white')
mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
f, ax = plt.subplots(figsize=(11,9))
cmap = sb.diverging_palette(220, 10, as_cmap=True)
sb.heatmap(corr, mask=mask, cmap=cmap, vmax=0.3, center=0,
square=True, linewidths=.5, cbar_kws={"shrink": .5}, annot=True)
plt.yticks(rotation=0)
plt.show()
plt.rcdefaults()
plot_correlation_heatmap(all_gen_cols)
我不确定是什么错误。
打印(all_gen_cols.corr())
协同作用的结果如下。我看到 NaN 采取行动,但我不确定为什么是 Nan。
action adventure casual indie massively_multiplayer rpg racing simulation sports strategy
action NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
adventure NaN 1.000000 0.007138 0.135392 0.023964 0.239136 -0.039846 0.036345 -0.064489 0.001435
casual NaN 0.007138 1.000000 0.235474 0.003487 -0.057726 0.079943 0.161448 0.149549 0.084417
indie NaN 0.135392 0.235474 1.000000 -0.082661 0.023372 0.045006 0.064723 0.056297 0.076749
massively_multiplayer NaN 0.023964 0.003487 -0.082661 1.000000 0.160078 0.036685 0.139929 0.018444 0.074683
rpg NaN 0.239136 -0.057726 0.023372 0.160078 1.000000 -0.046970 0.044506 -0.051714 0.097123
racing NaN -0.039846 0.079943 0.045006 0.036685 -0.046970 1.000000 0.127511 0.308864 -0.012170
simulation NaN 0.036345 0.161448 0.064723 0.139929 0.044506 0.127511 1.000000 0.212622 0.208754
sports NaN -0.064489 0.149549 0.056297 0.018444 -0.051714 0.308864 0.212622 1.000000 0.020048
strategy NaN 0.001435 0.084417 0.076749 0.074683 0.097123 -0.012170 0.208754 0.020048 1.000000
下面是通过打印出 print(all_gen_cols.describe())
action adventure casual indie massively_multiplayer rpg racing simulation sports strategy
count 14570.0 14570.000000 14570.000000 14570.000000 14570.000000 14570.000000 14570.000000 14570.000000 14570.000000 14570.000000
mean 1.0 0.362663 0.232189 0.657241 0.050927 0.165202 0.040288 0.121826 0.044269 0.127111
std 0.0 0.480785 0.422244 0.474648 0.219855 0.371376 0.196641 0.327096 0.205699 0.333108
min 1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
50% 1.0 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
75% 1.0 1.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
max 1.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
这是 link下载数据框。
action,adventure,casual,indie,massively_multiplayer,rpg,racing,simulation,sports,strategy
1,0,0,0,0,0,0,0,0,0
1,1,0,0,1,0,0,0,0,0
1,1,0,0,0,0,0,0,0,1
1,1,0,0,1,0,0,0,0,0
1,0,0,0,1,1,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,0,1,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,1,0,1
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,1,1,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,1,0,1
1,1,0,0,1,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,1,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,0
1,0,0,1,1,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,0,1,0,0,0,0,0
1,0,1,0,1,0,0,0,1,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,1,0,1,0,1,0,1,0,1
1,0,1,1,1,0,0,0,0,1
1,1,1,1,0,0,0,0,1,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,1,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,1,0,1,1,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,1,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,1,0,0,0,0,0
1,1,0,1,1,0,0,1,0,1
1,0,0,0,0,0,0,1,0,0
1,1,0,0,0,0,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,1
1,1,0,1,1,0,0,1,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,1
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,1,0,1,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,1,0,0,0,0,0
1,0,0,0,1,0,0,1,0,1
1,1,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,1,1,0,1,0,1
1,0,0,1,1,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,1,1,1,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,1,0,0,0,0,1
1,0,0,1,0,1,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,0,1,0,1,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,1,0,1,0,1,0,1
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,1,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,1,0,1,0,1,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,0,1,0,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,1,1,0,1,0,1
1,0,0,1,0,0,0,1,0,1
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,1,1,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,1,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,1,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,1,0,0,0,1,0,1
1,1,0,0,1,1,0,1,0,1
1,1,0,1,1,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,1,0,0,1,0,1,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,1,1,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,1,0,0,0,1,0,0
1,1,0,1,1,1,0,1,0,1
1,0,0,1,0,1,0,0,0,0
1,1,1,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,1,0,0,0,0,0,0,0
1,0,0,0,1,1,0,0,0,0
1,0,1,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,1,1,0,0,0,1
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,1,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,1,1,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,1,0,0,1,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,1,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,1,0,0
1,0,0,0,1,0,0,0,0,0
1,1,0,1,1,1,0,0,0,0
1,1,0,0,0,1,1,1,1,0
1,1,0,1,0,0,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,1,0,0
1,1,0,0,1,1,0,0,0,0
1,0,0,0,0,0,0,1,0,1
1,1,0,1,1,0,0,1,0,1
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,1,0,0
1,1,1,1,1,1,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,1,0,0
1,0,1,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,1,0,1,0,0,0,1,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,1,0,1
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,1,1,0,0,0,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,1,0,0,0,1
1,0,0,0,1,0,1,0,0,0
1,0,0,1,0,1,0,0,0,1
1,1,0,0,0,0,0,1,1,0
1,0,0,1,0,0,0,0,0,1
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,1,0,1,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,1,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,0,0,1,0,0,0,0
1,1,1,1,1,1,0,0,0,1
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,1,0,0,0,1
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,1,0
1,1,1,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,1,0
1,0,0,1,0,0,0,1,1,0
1,1,1,1,1,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,1,1,1,0
1,1,0,0,1,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,1,1,1,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,1,0,1,1,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,1,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,1,0,1,0,1,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,1
1,0,1,1,0,0,0,0,0,0
1,1,0,0,1,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,1,0,0,1,0,0,0,1
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,1,0,0,1,0,1
1,0,0,1,1,0,0,1,0,1
1,1,0,0,1,1,0,1,0,1
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,0,1,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,1
1,1,0,1,0,0,0,1,0,0
1,0,0,0,0,0,1,1,1,0
1,1,1,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,1,0,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,1,0,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,1,0,0,0,0,1,1,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,1,0,0,0,0
1,1,0,1,0,1,0,1,0,1
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,0,1,1,1,0,0,0
1,0,0,1,0,0,0,1,0,0
1,1,0,1,0,0,0,1,0,0
1,0,1,1,0,1,1,1,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,1,0,1,0,0
1,1,0,1,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,1,0,1
1,0,0,0,1,0,0,1,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,1,0,1,0,1,0,0,0,0
1,0,1,1,0,0,1,0,1,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,1,1,1,0,0,0,1,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,1
1,1,0,0,0,0,1,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,1,0,1,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,1
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,1,1,0,0,0,0
1,0,0,0,0,0,1,0,1,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,1,1,1,1,0,1,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,1,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,1,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,1,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,1,0,0,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,1,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,1,0,0,0,0,0,0,0,0
1,0,0,0,1,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,1,1,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,1,1,0,0
1,1,0,1,0,0,1,1,0,0
1,0,0,1,0,1,0,0,0,1
1,1,1,0,1,0,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,1,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,1,0,0,1
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,1,0,0,0,1,0,0,0
1,0,1,1,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,1
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,1,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,1,0,0,0,0,0,1,1
1,0,1,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,1
1,1,0,1,1,0,0,1,0,1
1,0,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,1
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,1,1
1,0,0,1,0,0,0,1,0,1
1,0,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,1
1,0,0,0,0,1,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,1,1,1,0,0,0,0
1,0,0,0,0,0,0,1,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,1,0,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,1,1,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,1,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,1,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,1,0,0,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,1,1,0,0,0,0,0,0
1,0,1,1,0,0,0,1,0,1
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,1,1,1,0,1,1,1,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,1,1,0,0,0,0
1,1,0,1,0,0,0,1,0,1
1,1,0,1,0,0,1,1,0,0
1,0,0,0,0,1,0,0,0,1
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,1,0,1
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,1,1,0,1,0,0
1,1,1,0,1,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,1,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,1,0,1,0,0
1,1,0,0,1,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,1,1,0,0,0,1,0,0
1,0,0,1,0,0,1,0,0,0
1,1,1,0,0,1,1,0,1,1
1,1,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,1,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,1
1,0,0,1,0,0,0,0,0,1
1,0,0,1,0,1,0,0,0,0
1,1,1,1,0,0,0,0,0,1
1,0,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,1,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,1
1,1,0,1,0,1,0,0,0,0
1,1,1,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,1,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,1,0,0,0,0,0,1
1,1,0,0,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,1,1,0,1
1,1,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,1
1,0,0,0,0,1,0,0,0,0
1,0,1,1,0,0,0,1,0,1
1,0,1,0,0,0,1,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,1,0,1,0
1,1,0,1,1,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,1,0,1,0,0,0,0
1,1,1,1,0,1,0,1,0,1
1,1,0,1,0,1,0,0,0,0
1,1,1,1,0,1,0,1,0,0
1,1,0,1,0,0,0,0,0,0
1,0,1,0,1,0,0,1,0,1
1,0,1,0,1,0,0,1,0,1
1,0,0,1,0,0,0,0,0,1
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,1
1,0,0,0,1,0,0,0,0,0
1,1,0,0,0,0,0,0,0,1
1,0,0,0,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,0,0,0,0,0,0,1
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,1,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,1,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,0,1,0,0,1,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,1,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,1,1,0,0,0,1
1,0,0,1,0,0,0,1,1,1
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,1,0,1,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,1,0,0,0,0,0,0
1,1,1,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,1
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,0,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,1,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,1,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,1,0,1
1,0,0,0,1,0,1,0,0,0
1,1,1,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,1,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,1,1,1,0,1,0,1,0,0
1,0,0,0,0,0,0,1,0,1
1,0,0,1,0,0,0,1,1,0
1,0,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,1,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,1,0,1,0,1,0,0,0,0
1,0,1,1,0,0,0,0,1,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,1,1,0,0,0,0,1,0
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,1,0,0,0,0,0,1
1,1,0,1,1,1,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,1,1,1,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,1,1,0,0,1,1,1,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,1,0,1
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,1,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,0,1,1,0,0,1,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,1,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,1,0,0
1,1,0,1,0,0,0,1,0,0
1,1,0,1,1,1,0,1,0,1
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,1,0
1,1,0,0,1,1,0,1,0,1
1,0,0,1,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,1,1,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,1,0,0,0,0
最佳答案
Seaborn 不显示完全为 NaN
的行和列;这些只是空的。这可能看起来很奇怪,但这是一个完全合乎逻辑的行为。
相关矩阵将一个常数值dataframe列对应的行列设置为NaN
。
一种解决方法可能是删除 NaN 列和行,如 @TrentonMcKinney 建议的那样,例如 corr = corr.dropna(how='all', axis=1).dropna(how='all ',轴=0)
。或者删除方差为零的数据框列 (corr = df.loc[:, df.var().ne(0)].corr()
)。
另一个解决方法是将 NaN 值涂成灰色:
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
import seaborn as sns
import pandas as pd
import numpy as np
def plot_correlation_heatmap(df):
corr = df.corr()
sns.set(style='white')
mask = np.zeros_like(corr, dtype=bool)
mask[np.triu_indices_from(mask)] = True
f, ax = plt.subplots(figsize=(11, 9))
cmap = sns.diverging_palette(220, 10, as_cmap=True)
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=0.3, center=0,
square=True, linewidths=.5, cbar_kws={"shrink": .5}, annot=True, ax=ax)
sns.heatmap(corr.fillna(0), mask=mask | ~ (np.isnan(corr)), cmap=ListedColormap(['lightgrey']),
square=True, linewidths=.5, cbar=False, annot=False, ax=ax)
ax.tick_params(axis='y', rotation=0)
plt.show()
plt.rcdefaults()
all_gen_cols = pd.DataFrame(np.random.randint(0, 2, size=(200, 10)), columns=[*'ABCDEFGHIJ'])
all_gen_cols['A'] = 1
plot_correlation_heatmap(all_gen_cols)
关于python - seaborn 热图显示轴标签,但当 df.corr 为 NaN 时没有值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/69866128/
我想要类似于以下伪代码的东西: while input is not None and timer = 5: print "took too long" else: print inp
如何将 MainEngine Observable 转换为 Cold?来自这个例子: public IObservable MainEngine { get
自从手表被发明以来,表盘的方圆之争就始终没有停下来过,在漫长的岁月中,无论是方形还是圆形表盘,人们都为其寻找到足够多的设计元素,让其肆意成长,这种生机与活力后来也延续到了智能手表上,在2014年,这
我正在学习 CUDA,试图解决一些标准问题。例如,我正在使用以下代码求解二维扩散方程。但我的结果与标准结果不同,我无法弄清楚。 //kernel definition __global__ void
我的 Web 应用程序使用 native dll 来实现其部分功能(其位置在 PATH 中提供)。一切正常,直到我对 WAR 进行更改并且 JBoss 热部署此 WAR。此时dll已经找不到了,需要手
我看到这个问题here 。这是关于实现每个发出的项目的延迟。这是根据accepted answer如何实现的: Observable.zip(Observable.range(1, 5) .g
我最近一直在进行冷迁移...这意味着我无法在进行迁移时从应用程序级别读取/写入数据库(维护页面)。 这样就不会因为更改结构而发生错误,而且如果负载很大,我也不希望 mysql 在迁移过程中崩溃。 我的
我是一名优秀的程序员,十分优秀!