- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
在 SQL 中计算 AUC 的最佳方法是什么?
这是我得到的(假设表 T(label, confid) 和 label=0,1):
SELECT sum(cumneg * label) * 1e0 / (sum(label) * sum(1-label)) AS auc
FROM (
SELECT label,
sum(1-label) OVER(ORDER BY confid ROWS UNBOUNDED PRECEDING) (BIGINT) cumneg
FROM T
) t;
我必须在 Teradata 中乘以 1e0 才能得到真正的结果。 Bigint 强制转换对于避免溢出是必要的。
最佳答案
这是我发现的一个稍微不同但可能更简单的解决方案:
SELECT (sum(label*r) - 0.5*sum(label)*(sum(label)+1)) / (sum(label) * sum(1-label)) AS auc
FROM (
SELECT label, row_number() OVER (ORDER BY confid) r
FROM T
) t;
返回与问题中的查询相同的结果。
更新
当有多个具有相同预测(可信)但标签不同的示例时,此 SQL 查询(以及问题中的查询)是不确定的。要使用插值计算确定性 AUC,可以按如下方式修改查询:
SELECT (sum(pos*r) - 0.5*sum(pos)*(sum(pos)+1) - 0.5*sum(pos*neg)) /
(sum(pos) * sum(neg)) AS auc
FROM (
SELECT pos, neg,
sum(pos+neg) OVER (ORDER BY confid ROWS UNBOUNDED PRECEDING) r
FROM (
SELECT confid, sum(label) AS pos, sum(1-label) AS neg
FROM T
GROUP BY confid) t
) t;
在AUC公式中,分母是对的总数(正X负)。分子计算有多少对被正确排序。 sum(pos*r)
计算到目前为止的对总数(基于置信度顺序)。该数字包括正 X 正对,因此第二项减去这些。最后,最后一项减去具有相同预测的正 X 负对的一半。
关于auc - 在 SQL 中计算 AUC,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54318310/
在 SQL 中计算 AUC 的最佳方法是什么? 这是我得到的(假设表 T(label, confid) 和 label=0,1): SELECT sum(cumneg * label) * 1e0 /
我正在训练用于图像分类的CNN。由于我的数据集有限,我正在使用转移学习。基本上,我使用的是Google在其再培训示例(https://www.tensorflow.org/tutorials/imag
我正在 sci-kit learn 中构建 MLPClassifier 模型。我使用 gridSearchCV 和 roc_auc 对模型进行评分。训练和考试的平均成绩在 0.76 左右,还不错。 c
我使用我的测试集作为验证集。我使用了与 How to compute Receiving Operating Characteristic (ROC) and AUC in keras? 类似的方法
我分别从 sklearn 的 RandomForestClassifier 和 roc_curve、auc 方法收到不同的 ROC-AUC 分数。 以下代码让我获得了 0.878 的 ROC-AUC(
如何获得具有 fpr 和 tpr 的 AUC 值? Fpr 和 tpr 只是从这些公式中获得的 2 个浮点数: my_fpr = fp / (fp + tn) my_tpr = tp / (tp +
我有一个分类问题,我想在 sklearn 中使用 cross_validate 获取 roc_auc 值。我的代码如下。 from sklearn import datasets iris = dat
我有一个分类问题,我想在 sklearn 中使用 cross_validate 获取 roc_auc 值。我的代码如下。 from sklearn import datasets iris = dat
在 scikit learn 中,您可以使用以下方法计算二元分类器的曲线下面积 roc_auc_score( Y, clf.predict_proba(X)[:,1] ) 我只对误报率小于 0.1 的
我正在尝试为我的 SVM 找到参数,这些参数会给我最好的 AUC。但是我在 sklearn 中找不到 AUC 的任何评分函数。有人有想法吗?这是我的代码: parameters = {"C":
这是一个代表 library(caret) library(dplyr) set.seed(88, sample.kind = "Rounding") mtcars % mutate(am = a
对于二元分类问题,我有一个略微不平衡的数据集,正负比为 0.6。 我最近从这个答案中了解到了 auc 指标:https://stats.stackexchange.com/a/132832/12822
我有一个 Spark 数据框,如下所示: predictions.show(5) +------+----+------+-----------+ | user|item|rating| predi
我正在研究一个分类问题,其评估指标为 ROC AUC。到目前为止,我已经尝试使用具有不同参数的 xgb 。这是我用来采样数据的函数。并且可以找到相关笔记本here (google colab) def
我对 python 中的 scikit-learn 中如何生成阈值感到困惑。对于以下示例,生成了四个阈值,当我将 pred 中的第三个值更改为 0.6 时,阈值数量降至 3。任何人都可以解释为什么会这
假设我有一个如下所示的数据集: word label_numeric 0 active 0 1 adventurous 0 2 aggressive 0 3 aggressi
我有一个分类问题,需要根据给定的数据预测 (0,1) 类。基本上我有一个包含超过 300 个特征(包括预测目标值)和超过 2000 行(样本)的数据集。我应用了不同的分类器,如下所示: 1. Dec
我的目标是找到预测模型来确定是否偿还贷款。我的来源是一个 CSV 文件,其中包含贷款特征以及是否已偿还。我使用 ROC 曲线和 AUC 评估模型的性能 df = pd.read_csv(your_pa
我想知道为什么我们的目标是在最大化准确率时最大化 AUC? 我认为,除了最大化准确性的主要目标之外,AUC 也会自动变大。 最佳答案 我想我们使用 AUC 是因为它解释了我们的方法能够在多大程度上独立
我正在尝试在非常不平衡的数据集上使用 LightGBM 构建分类器。不平衡的比例为 97:3,即: Class 0 0.970691 1 0.029309 我使用的参数和训练代码如下所示。
我是一名优秀的程序员,十分优秀!