- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
在 pandas 中,以下代码会将 col1 中的字符串拆分为许多列。有没有办法在极地做到这一点?
d = {'col1': ["a/b/c/d", "a/b/c/d"]}
df= pd.DataFrame(data=d)
df[["a","b","c","d"]]=df["col1"].str.split('/',expand=True)
最佳答案
这是一个自动调整所需列数的算法 - 并且应该非常高效。
让我们从这些数据开始。请注意,我特意添加了空字符串 ""
和空值 - 以显示算法如何处理这些值。此外,拆分字符串的数量差异很大。
import polars as pl
df = pl.DataFrame(
{
"my_str": ["cat", "cat/dog", None, "", "cat/dog/aardvark/mouse/frog"],
}
)
df
shape: (5, 1)
┌─────────────────────────────┐
│ my_str │
│ --- │
│ str │
╞═════════════════════════════╡
│ cat │
├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ cat/dog │
├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ null │
├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ │
├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ cat/dog/aardvark/mouse/frog │
└─────────────────────────────┘
下面的算法可能比你需要的多一点,但你可以根据需要编辑/删除/添加。
(
df
.with_row_count('id')
.with_column(pl.col("my_str").str.split("/").alias("split_str"))
.explode("split_str")
.with_column(
("string_" + pl.arange(0, pl.count()).cast(pl.Utf8).str.zfill(2))
.over("id")
.alias("col_nm")
)
.pivot(
index=['id', 'my_str'],
values='split_str',
columns='col_nm',
)
.with_column(
pl.col('^string_.*$').fill_null("")
)
)
shape: (5, 7)
┌─────┬─────────────────────────────┬───────────┬───────────┬───────────┬───────────┬───────────┐
│ id ┆ my_str ┆ string_00 ┆ string_01 ┆ string_02 ┆ string_03 ┆ string_04 │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ u32 ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞═════╪═════════════════════════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╡
│ 0 ┆ cat ┆ cat ┆ ┆ ┆ ┆ │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 1 ┆ cat/dog ┆ cat ┆ dog ┆ ┆ ┆ │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 2 ┆ null ┆ ┆ ┆ ┆ ┆ │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 3 ┆ ┆ ┆ ┆ ┆ ┆ │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 4 ┆ cat/dog/aardvark/mouse/frog ┆ cat ┆ dog ┆ aardvark ┆ mouse ┆ frog │
└─────┴─────────────────────────────┴───────────┴───────────┴───────────┴───────────┴───────────┘
我们首先分配一个行号id
(我们稍后会用到),然后使用split
将字符串分开。请注意,拆分后的字符串会形成一个列表。
(
df
.with_row_count('id')
.with_column(pl.col("my_str").str.split("/").alias("split_str"))
)
shape: (5, 3)
┌─────┬─────────────────────────────┬────────────────────────────┐
│ id ┆ my_str ┆ split_str │
│ --- ┆ --- ┆ --- │
│ u32 ┆ str ┆ list[str] │
╞═════╪═════════════════════════════╪════════════════════════════╡
│ 0 ┆ cat ┆ ["cat"] │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 1 ┆ cat/dog ┆ ["cat", "dog"] │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 2 ┆ null ┆ null │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 3 ┆ ┆ [""] │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 4 ┆ cat/dog/aardvark/mouse/frog ┆ ["cat", "dog", ... "frog"] │
└─────┴─────────────────────────────┴────────────────────────────┘
接下来,我们将使用 explode
将每个字符串放在自己的行上。 (注意 id
列如何跟踪每个字符串来自的原始行。)
(
df
.with_row_count('id')
.with_column(pl.col("my_str").str.split("/").alias("split_str"))
.explode("split_str")
)
shape: (10, 3)
┌─────┬─────────────────────────────┬───────────┐
│ id ┆ my_str ┆ split_str │
│ --- ┆ --- ┆ --- │
│ u32 ┆ str ┆ str │
╞═════╪═════════════════════════════╪═══════════╡
│ 0 ┆ cat ┆ cat │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 1 ┆ cat/dog ┆ cat │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 1 ┆ cat/dog ┆ dog │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 2 ┆ null ┆ null │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 3 ┆ ┆ │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 4 ┆ cat/dog/aardvark/mouse/frog ┆ cat │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 4 ┆ cat/dog/aardvark/mouse/frog ┆ dog │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 4 ┆ cat/dog/aardvark/mouse/frog ┆ aardvark │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 4 ┆ cat/dog/aardvark/mouse/frog ┆ mouse │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 4 ┆ cat/dog/aardvark/mouse/frog ┆ frog │
└─────┴─────────────────────────────┴───────────┘
在下一步中,我们将生成列名。我选择调用每一列 string_XX
其中 XX
是相对于原始字符串的偏移量。
我使用了方便的 zfill
表达式使 1
变为 01
。 (如果您决定稍后对列进行排序,这可以确保 string_02
出现在 string_10
之前。)
您可以根据需要在此步骤中替换您自己的命名。
(
df
.with_row_count('id')
.with_column(pl.col("my_str").str.split("/").alias("split_str"))
.explode("split_str")
.with_column(
("string_" + pl.arange(0, pl.count()).cast(pl.Utf8).str.zfill(2))
.over("id")
.alias("col_nm")
)
)
shape: (10, 4)
┌─────┬─────────────────────────────┬───────────┬───────────┐
│ id ┆ my_str ┆ split_str ┆ col_nm │
│ --- ┆ --- ┆ --- ┆ --- │
│ u32 ┆ str ┆ str ┆ str │
╞═════╪═════════════════════════════╪═══════════╪═══════════╡
│ 0 ┆ cat ┆ cat ┆ string_00 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 1 ┆ cat/dog ┆ cat ┆ string_00 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 1 ┆ cat/dog ┆ dog ┆ string_01 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 2 ┆ null ┆ null ┆ string_00 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 3 ┆ ┆ ┆ string_00 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 4 ┆ cat/dog/aardvark/mouse/frog ┆ cat ┆ string_00 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 4 ┆ cat/dog/aardvark/mouse/frog ┆ dog ┆ string_01 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 4 ┆ cat/dog/aardvark/mouse/frog ┆ aardvark ┆ string_02 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 4 ┆ cat/dog/aardvark/mouse/frog ┆ mouse ┆ string_03 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 4 ┆ cat/dog/aardvark/mouse/frog ┆ frog ┆ string_04 │
└─────┴─────────────────────────────┴───────────┴───────────┘
在下一步中,我们将使用 pivot
函数将每个字符串放在自己的列中。
(
df
.with_row_count('id')
.with_column(pl.col("my_str").str.split("/").alias("split_str"))
.explode("split_str")
.with_column(
("string_" + pl.arange(0, pl.count()).cast(pl.Utf8).str.zfill(2))
.over("id")
.alias("col_nm")
)
.pivot(
index=['id', 'my_str'],
values='split_str',
columns='col_nm',
)
)
shape: (5, 7)
┌─────┬─────────────────────────────┬───────────┬───────────┬───────────┬───────────┬───────────┐
│ id ┆ my_str ┆ string_00 ┆ string_01 ┆ string_02 ┆ string_03 ┆ string_04 │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ u32 ┆ str ┆ str ┆ str ┆ str ┆ str ┆ str │
╞═════╪═════════════════════════════╪═══════════╪═══════════╪═══════════╪═══════════╪═══════════╡
│ 0 ┆ cat ┆ cat ┆ null ┆ null ┆ null ┆ null │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 1 ┆ cat/dog ┆ cat ┆ dog ┆ null ┆ null ┆ null │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 2 ┆ null ┆ null ┆ null ┆ null ┆ null ┆ null │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 3 ┆ ┆ ┆ null ┆ null ┆ null ┆ null │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 4 ┆ cat/dog/aardvark/mouse/frog ┆ cat ┆ dog ┆ aardvark ┆ mouse ┆ frog │
└─────┴─────────────────────────────┴───────────┴───────────┴───────────┴───────────┴───────────┘
剩下的就是使用fill_null
用空字符串 ""
替换 null
值。请注意,我在 col
中使用了正则表达式。表达式仅针对名称以“string_”开头的那些列。 (根据您的其他数据,您可能不想在数据中的任何地方用 ""
替换 null。)
关于python-polars 通过分隔符将字符串列拆分为多列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/73699500/
如何在 Polars DataFrame 上应用字数统计我有一个字符串列,我想对所有文本进行字数统计。谢谢 数据框示例: 0 Would nev
如果我有一个 Polars 文字,我该如何提取值? import polars as pl expr = pl.lit(0.5) val = float(expr) # TypeError: floa
有没有一种方法可以通过多个条件来过滤 polars DataFrame? 这是我的用例以及我目前如何解决它,但我想知道如何解决它,如果我的日期列表更长: dates = ["2018-03-25",
如果我有一个 Polars 文字,我该如何提取值? import polars as pl expr = pl.lit(0.5) val = float(expr) # TypeError: floa
有没有一种方法可以通过多个条件来过滤 polars DataFrame? 这是我的用例以及我目前如何解决它,但我想知道如何解决它,如果我的日期列表更长: dates = ["2018-03-25",
我有一个字符串格式的 UUID 时间序列,我希望 Polars 将它们转换为 u128 数字,以便更好地存储和查询。 与我们处理日期的方式类似: ....str.strptime(pl.Datetim
我正在尝试用 Polars 替换 Pandas在生产代码中,以获得更好的内存性能。 Pandas .isna() 方法的 Polars 等价物是什么?我在文档中找不到任何好的等效项。 最佳答案 Pol
我正在寻找在 polars 中执行 pandas 的 df.groupby(["group_a", "group_b"]).ngroup() 并将特定的 ngroup 计数器值分配回的最佳方法相应的组
我得到了一个 pl.LazyFrame,其中包含包含日期表示形式的 Object 类型列,它还包含缺失值(无)。 第一步,我想将列从 Object 转换为 Utf8,但这会导致 ComputeErro
我有一个包含 2 列的数据框,其中第一列包含列表,第二列包含整数索引。如何通过第二列中指定的索引从第一列获取元素?或者更好的是,将该元素放在第 3 列中。因此,例如,如何从这个 a = pl.Data
假设我有一个由以下代码手动生成的简单数据框: cols=['a','b','c'] values=['d','e','f'] df=(pl.DataFrame({cols[i]:[values[i]]
我有一个桌面应用程序,其中大部分计算 (>90%) 发生在它的 Rust 端。但我希望用户能够用 Python 编写脚本来对 df 进行操作。 这可以在不将运行时之间的数据帧序列化为文件的情况下完成吗
所以我有一个看起来像这样的 Polars 数据框 df = pl.DataFrame( { "ItemId": [15148, 15148, 24957], "
在 pandas 中,以下代码会将 col1 中的字符串拆分为许多列。有没有办法在极地做到这一点? d = {'col1': ["a/b/c/d", "a/b/c/d"]} df= pd.DataFr
除一种情况外,我很享受 Polars 比 Pandas 的显着加速。我是 Polars 的新手,所以这可能只是我的错误用法。无论如何,这是一个玩具示例:在单列上,我需要在我的情况下应用自定义函数,它是
我有一个极坐标数据框: df = pl.DataFrame({'schema_name': ['test_schema', 'test_schema_2'],
所以我有一个极坐标列/系列,它是数字字符串。 s = pl.Series("a", ["111","123","101"]) s shape: (3,) Series: 'a' [str] [
总的来说,我对 Polars 和 Python 都很陌生。我有一个有点不寻常的问题,需要一些帮助。我有一个包含 50 多个 0/1 列的数据框。我需要创建一个新列,其中包含每列的逗号分隔列表,其中包含
你好; 是否有任何函数可以通过计算两个系列的行最小值来生成系列?功能将类似于 np.minimum a = [1,4,2,5,2]b= [5,1,4,2,5] np.minimum(a,b) -> [
在对 FPGA 进行了一番研究之后,我在分配引脚时差点心脏病发作。 FPGA 上有任意数量的引脚,一些 IDE 很有帮助,可以让您访问封装信息,包括引脚数、它们属于哪个 IO 组以及极性是。在广泛研究
我是一名优秀的程序员,十分优秀!