gpt4 book ai didi

r - 是否有从多个数据集中获取多个列中的计数的函数?

转载 作者:行者123 更新时间:2023-12-05 00:45:26 28 4
gpt4 key购买 nike

我有 2 列邮政编码。一个代表我的订单,另一个代表这些订单的报告问题,两者都在单独的数据集中。

我的订单数据集中有一个邮政编码列:

B0E1H0
B3M0G4
B3K6R6
B3L1J7
B0E1H0
B3K3M2
B3K2Z8
B0E1H0
B3K6R6
B0E1H0

我报告的问题数据集中有一个邮政编码列:
B3K6R6
B3K6R6
B0E1H0
B0E1H0
B3L1J7

我想最终得到一个数据框,它为我提供了一个唯一邮政编码列表、数量、问题数量以及每个邮政编码的问题比例,所以是这样的:
Postal code, Volume, Issues, Issue %
BOE1H0, 4, 2, 50%
B3K2Z8, 1, 0, 0%
B3K3M2, 1, 0, 0%
B3K6R6, 2, 2, 100%
B3L1J7, 1, 1, 100%
B3M0G4, 1, 0, 0%

通过执行以下操作,我能够获得第一 2 行:
    orders <- read.csv("G:\\My Drive\\R\\R Data\\Stuff\\Text File\\Orders.csv", header = TRUE)
pcvec <- as.vector(orders["Postal.Code"])
unipc <- unique(pcvec,incomparables = F)
unipcvec <- as.vector(unipc)
pccount <- count(orders, "Postal.Code")
nrow(unipc)
x <- data.frame(pccount)
x <- rename(x, c("freq" = "Volume"))
x

Postal.Code Volume
1 B0C1H0 1
2 B0E1B0 3
3 B0E1H0 7
4 B0E1L0 1
5 B0E1N0 1
6 B0E1P0 1
7 B0E1V0 1
8 B0E1W0 1
9 B0E2K0 1

我的卷数据集中有大约 5000 行,我的问题数据集中有大约 300 行,可以轻松做到这一点吗?

抱歉,如果我没有正确的术语,请告诉我是否可以澄清这一点。

最佳答案

这是 data.table 的一个选项.将'data.frame'转换为'data.table'(setDT(df1)setDT(df2)),通过'V1'获取行数(.N),做一个连接on 'V1',然后通过将非常见列除以得到百分比,同时分配 NA为 0

library(data.table)
setnames(setDT(df1)[, .N, V1][setDT(df2)[, .N, V1],
Issues := i.N, on = .(V1)][, Issue_perc:= Issues/N * 100][is.na(Issues),
c('Issues', 'Issue_perc') := 0], 'N', 'Volume')[]
# V1 Volume Issues Issue_perc
#1: B0E1H0 4 2 50
#2: B3M0G4 1 0 0
#3: B3K6R6 2 2 100
#4: B3L1J7 1 1 100
#5: B3K3M2 1 0 0
#6: B3K2Z8 1 0 0

dcast 的其他选项
dcast(rbindlist(list(df1, df2), idcol = 'grp')[, .N, .(grp, V1)],
V1 ~ c("Volume", "Issues")[grp], value.var = "N", fill = 0)[,
Issue_perc := Issues/Volume * 100][]
# V1 Issues Volume Issue_perc
#1: B0E1H0 2 4 50
#2: B3K2Z8 0 1 0
#3: B3K3M2 0 1 0
#4: B3K6R6 2 2 100
#5: B3L1J7 1 1 100
#6: B3M0G4 0 1 0

或使用 base R ,我们创建一个 union来自两个数据集的 'V1' 列中的元素,然后转换为 factorlevels指定为'lvls',得到 table ,做一个 mergetransform创建“Issue_perc”列
lvls <- union(df1$V1, df2$V1)
transform(merge(as.data.frame(table(factor(df1$V1, levels = lvls))),
as.data.frame(table(factor(df2$V1, levels = lvls))), by = 'Var1'),
Issue_perc = Freq.y/Freq.x * 100)
# Var1 Freq.x Freq.y Issue_perc
#1 B0E1H0 4 2 50
#2 B3K2Z8 1 0 0
#3 B3K3M2 1 0 0
#4 B3K6R6 2 2 100
#5 B3L1J7 1 1 100
#6 B3M0G4 1 0 0

或带有 tidyverse 的选项,我们将数据集放入 list , map通过 list , 将 'V1' 转换为 factorlevels如前所述, reduce list通过执行 inner_join 到单个 data.frame ,然后使用 mutate 创建百分比列
library(tidyverse)
list(df1, df2) %>%
map(~ .x %>%
mutate(V1 = factor(V1, levels = lvls)) %>%
count(V1, .drop = FALSE)) %>%
reduce(inner_join, by = 'V1') %>%
mutate(Issue_perc = n.y/n.x * 100) %>%
rename_at(vars(matches('n\\.')), ~ c("Volume", "Issues"))
# A tibble: 6 x 4
# V1 Volume Issues Issue_perc
# <fct> <int> <int> <dbl>
#1 B0E1H0 4 2 50
#2 B3M0G4 1 0 0
#3 B3K6R6 2 2 100
#4 B3L1J7 1 1 100
#5 B3K3M2 1 0 0
#6 B3K2Z8 1 0 0

或者稍微不同的选择是将数据集放在 list 中。 ,然后将它们与分组列绑定(bind), count获取频率, spread为“宽”格式,然后创建新的“perc”列
list(df1, df2) %>%
bind_rows(.id = 'grp') %>%
count(grp, V1) %>%
mutate(grp = c("Volume", "Issues")[as.integer(grp)]) %>%
spread(grp, n, fill = 0) %>%
mutate(Issue_perc = Issues/Volume * 100)
# A tibble: 6 x 4
# V1 Issues Volume Issue_perc
# <chr> <dbl> <dbl> <dbl>
#1 B0E1H0 2 4 50
#2 B3K2Z8 0 1 0
#3 B3K3M2 0 1 0
#4 B3K6R6 2 2 100
#5 B3L1J7 1 1 100
#6 B3M0G4 0 1 0

数据
df1 <- structure(list(V1 = c("B0E1H0", "B3M0G4", "B3K6R6", "B3L1J7", 
"B0E1H0", "B3K3M2", "B3K2Z8", "B0E1H0", "B3K6R6", "B0E1H0")), row.names
= c(NA, -10L), class = "data.frame")

df2 <- structure(list(V1 = c("B3K6R6", "B3K6R6", "B0E1H0", "B0E1H0",
"B3L1J7")), row.names = c(NA, -5L), class = "data.frame")

关于r - 是否有从多个数据集中获取多个列中的计数的函数?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57237372/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com