- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试计算 15 天柱的指数移动平均线,但希望在每个(结束)日/柱上看到 15 天柱 EMA 的“演变”。所以,这意味着我有 15 天的柱线。当每天都有新数据出现时,我想使用新信息重新计算 EMA。实际上我有 15 天的柱线,然后,每天之后我的新 15 天柱线开始增长,并且出现的每个新柱线都应该与之前的完整 15 天柱线一起用于 EMA 计算。
假设我们从 2012 年 1 月 1 日开始(我们有每个日历日的数据),在 2012 年 1 月 15 日结束时,我们有第一个完整的 15 天柱。在 2012 年 3 月 1 日完成 4 个完整的 15 天柱线后,我们可以开始计算 4 柱线 EMA (EMA(x, n=4))。在 2012 年 3 月 2 日结束时,我们使用我们目前掌握的信息并计算 2012 年 3 月 2 日的 EMA,假设 2012 年 3 月 2 日的 OHLC 是正在进行的 15 天柱线。所以我们取 4 个完整的柱线和 2012-03-02 的柱线并计算 EMA(x, n=4)。然后我们再等一天,看看新的 15 天柱线发生了什么(有关详细信息,请参阅下面的函数 to.period.cumulative)并计算 EMA 的新值......然后在接下来的 15 天......见函数 EMA.cumulative 下面的详细信息...
请在下面找到我到现在为止能想出的东西。性能对我来说是 Not Acceptable ,而且以我有限的 R 知识,我无法让它更快。
library(quantmod)
do.call.rbind <- function(lst) {
while(length(lst) > 1) {
idxlst <- seq(from=1, to=length(lst), by=2)
lst <- lapply(idxlst, function(i) {
if(i==length(lst)) { return(lst[[i]]) }
return(rbind(lst[[i]], lst[[i+1]]))
})
}
lst[[1]]
}
to.period.cumulative <- function(x, name=NULL, period="days", numPeriods=15) {
if(is.null(name))
name <- deparse(substitute(x))
cnames <- c("Open", "High", "Low", "Close")
if (has.Vo(x))
cnames <- c(cnames, "Volume")
cnames <- paste(name, cnames, sep=".")
if (quantmod:::is.OHLCV(x)) {
x <- OHLCV(x)
out <- do.call.rbind(
lapply(split(x, f=period, k=numPeriods),
function(x) cbind(rep(first(x[,1]), NROW(x[,1])),
cummax(x[,2]), cummin(x[,3]), x[,4], cumsum(x[,5]))))
} else if (quantmod:::is.OHLC(x)) {
x <- OHLC(x)
out <- do.call.rbind(
lapply(split(x, f=period, k=numPeriods),
function(x) cbind(rep(first(x[,1]), NROW(x[,1])),
cummax(x[,2]), cummin(x[,3]), x[,4])))
} else {
stop("Object does not have OHLC(V).")
}
colnames(out) <- cnames
return(out)
}
EMA.cumulative<-function(cumulativeBars, nEMA = 4, period="days", numPeriods=15) {
barsEndptCl <- Cl(cumulativeBars[endpoints(cumulativeBars, on=period, k=numPeriods)])
# TODO: This is sloooooooooooooooooow...
outEMA <- do.call.rbind(
lapply(split(Cl(cumulativeBars), period),
function(x) {
previousFullBars <- barsEndptCl[index(barsEndptCl) < last(index(x)), ]
if (NROW(previousFullBars) >= (nEMA - 1)) {
last(EMA(last(rbind(previousFullBars, x), n=(nEMA + 1)), n=nEMA))
} else {
xts(NA, order.by=index(x))
}
}))
colnames(outEMA) <- paste("EMA", nEMA, sep="")
return(outEMA)
}
getSymbols("SPY", from="2010-01-01")
SPY.cumulative <- to.period.cumulative(SPY, , name="SPY")
system.time(
SPY.EMA <- EMA.cumulative(SPY.cumulative)
)
user system elapsed
4.708 0.000 4.410
最佳答案
我还没有找到一个令人满意的解决方案来解决我使用 R 的问题。所以我使用了旧工具,c 语言,结果比我预期的要好。感谢您使用 Rcpp、inline 等这些很棒的工具“插入”我。太棒了。我想,每当我将来有性能要求并且使用 R 无法满足时,我都会将 C 添加到 R 并且性能就在那里。因此,请在下面查看我的代码和性能问题的解决方案。
# How to speedup cumulative EMA calculation
#
###############################################################################
library(quantmod)
library(Rcpp)
library(inline)
library(rbenchmark)
do.call.rbind <- function(lst) {
while(length(lst) > 1) {
idxlst <- seq(from=1, to=length(lst), by=2)
lst <- lapply(idxlst, function(i) {
if(i==length(lst)) { return(lst[[i]]) }
return(rbind(lst[[i]], lst[[i+1]]))
})
}
lst[[1]]
}
to.period.cumulative <- function(x, name=NULL, period="days", numPeriods=15) {
if(is.null(name))
name <- deparse(substitute(x))
cnames <- c("Open", "High", "Low", "Close")
if (has.Vo(x))
cnames <- c(cnames, "Volume")
cnames <- paste(name, cnames, sep=".")
if (quantmod:::is.OHLCV(x)) {
x <- quantmod:::OHLCV(x)
out <- do.call.rbind(
lapply(split(x, f=period, k=numPeriods),
function(x) cbind(rep(first(x[,1]), NROW(x[,1])),
cummax(x[,2]), cummin(x[,3]), x[,4], cumsum(x[,5]))))
} else if (quantmod:::is.OHLC(x)) {
x <- OHLC(x)
out <- do.call.rbind(
lapply(split(x, f=period, k=numPeriods),
function(x) cbind(rep(first(x[,1]), NROW(x[,1])),
cummax(x[,2]), cummin(x[,3]), x[,4])))
} else {
stop("Object does not have OHLC(V).")
}
colnames(out) <- cnames
return(out)
}
EMA.cumulative<-function(cumulativeBars, nEMA = 4, period="days", numPeriods=15) {
barsEndptCl <- Cl(cumulativeBars[endpoints(cumulativeBars, on=period, k=numPeriods)])
# TODO: This is sloooooooooooooooooow...
outEMA <- do.call.rbind(
lapply(split(Cl(cumulativeBars), period),
function(x) {
previousFullBars <- barsEndptCl[index(barsEndptCl) < last(index(x)), ]
if (NROW(previousFullBars) >= (nEMA - 1)) {
last(EMA(last(rbind(previousFullBars, x), n=(nEMA + 1)), n=nEMA))
} else {
xts(NA, order.by=index(x))
}
}))
colnames(outEMA) <- paste("EMA", nEMA, sep="")
return(outEMA)
}
EMA.c.c.code <- '
/* Initalize loop and PROTECT counters */
int i, P=0;
/* ensure that cumbars and fullbarsrep is double */
if(TYPEOF(cumbars) != REALSXP) {
PROTECT(cumbars = coerceVector(cumbars, REALSXP)); P++;
}
/* Pointers to function arguments */
double *d_cumbars = REAL(cumbars);
int i_nper = asInteger(nperiod);
int i_n = asInteger(n);
double d_ratio = asReal(ratio);
/* Input object length */
int nr = nrows(cumbars);
/* Initalize result R object */
SEXP result;
PROTECT(result = allocVector(REALSXP,nr)); P++;
double *d_result = REAL(result);
/* Find first non-NA input value */
int beg = i_n*i_nper - 1;
d_result[beg] = 0;
for(i = 0; i <= beg; i++) {
/* Account for leading NAs in input */
if(ISNA(d_cumbars[i])) {
d_result[i] = NA_REAL;
beg++;
d_result[beg] = 0;
continue;
}
/* Set leading NAs in output */
if(i < beg) {
d_result[i] = NA_REAL;
}
/* Raw mean to start EMA - but only on full bars*/
if ((i != 0) && (i%i_nper == (i_nper - 1))) {
d_result[beg] += d_cumbars[i] / i_n;
}
}
/* Loop over non-NA input values */
int i_lookback = 0;
for(i = beg+1; i < nr; i++) {
i_lookback = i%i_nper;
if (i_lookback == 0) {
i_lookback = 1;
}
/*Previous result should be based only on full bars*/
d_result[i] = d_cumbars[i] * d_ratio + d_result[i-i_lookback] * (1-d_ratio);
}
/* UNPROTECT R objects and return result */
UNPROTECT(P);
return(result);
'
EMA.c.c <- cfunction(signature(cumbars="numeric", nperiod="numeric", n="numeric", ratio="numeric"), EMA.c.c.code)
EMA.cumulative.c<-function(cumulativeBars, nEMA = 4, period="days", numPeriods=15) {
ratio <- 2/(nEMA+1)
outEMA <- EMA.c.c(cumbars=Cl(cumulativeBars), nperiod=numPeriods, n=nEMA, ratio=ratio)
outEMA <- reclass(outEMA, Cl(cumulativeBars))
colnames(outEMA) <- paste("EMA", nEMA, sep="")
return(outEMA)
}
getSymbols("SPY", from="2010-01-01")
SPY.cumulative <- to.period.cumulative(SPY, name="SPY")
system.time(
SPY.EMA <- EMA.cumulative(SPY.cumulative)
)
system.time(
SPY.EMA.c <- EMA.cumulative.c(SPY.cumulative)
)
res <- benchmark(EMA.cumulative(SPY.cumulative), EMA.cumulative.c(SPY.cumulative),
columns=c("test", "replications", "elapsed", "relative", "user.self", "sys.self"),
order="relative",
replications=10)
print(res)
> print(res)
test replications elapsed relative user.self
2 EMA.cumulative.c(SPY.cumulative) 10 0.026 1.000 0.024
1 EMA.cumulative(SPY.cumulative) 10 57.732 2220.462 56.755
关于r - 加速 WMA(加权移动平均)计算,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/8720055/
我想在我的 iPhone 应用程序中加入线性回归。经过一些搜索,我发现 Accelerate Framework 中的 LAPACK 和 BLAS 是正确的库。但是我很难将加速框架添加到我的 XCod
有什么方法可以加速 JS 脚本(我指的是一些复杂的 DOM 操作,比如游戏或动画)? 最佳答案 真的没有办法真正加快速度。您可以压缩它,但不会快很多。 关于Javascript 加速?,我们在Stac
有时,我必须为一个项目重新导入数据,从而将大约 360 万行读入 MySQL 表(目前是 InnoDB,但我实际上并不局限于这个引擎)。 “加载数据文件...”已被证明是最快的解决方案,但它有一个权衡
在尝试计算加速时,我被卡住了。所以给出的问题是: 问题 1 如果程序的 50% 增强了 2 倍,其余 50% 增强了 4 倍,那么由于增强而导致的整体加速是多少? Hints:考虑增强前(未增强)机器
目前我正在处理实时绘图,但可视化非常慢。我想知道你可以做些什么来加速 Matplotlib 中的事情: 后端如何影响性能?是否有后端 实时绘图比其他人更好吗? 我可以降低分辨率以提高 FPS 吗? 如
我有一个小型测试框架。它执行一个循环,执行以下操作: 生成一个小的 Haskell 源文件。 使用 runhaskell 执行此操作.该程序生成各种磁盘文件。 处理刚刚生成的磁盘文件。 这种情况发生了
这是我的网站:Instant-YouTube 如您所见,加载需要很长时间。在 IE8 及以下甚至有时会导致浏览器崩溃。我不确定是什么原因造成的。可能是 Clicksor 广告,但我认为是 swfobj
是否可以加速 SKSpriteNode? 我知道可以使用 node.physicsBody.velocity 轻松设置速度但是设置它的加速度有多难? 最佳答案 从牛顿第二定律倒推运动:F = m.a您
有没有人有加速 FCKEditor 的技术?是否有一些关键的 JavaScript 文件可以缩小或删除? 最佳答案 在最新版本 (3.0.1) 中,FCKEditor 已重命名为 CKEditor .
我有以下 MySQL 查询,需要一天多的时间才能执行: SELECT SN,NUMBER FROM a WHERE SN IN (SELECT LOWER_SN FROM b WHER
我现在正在开发一款使用加速来玩的游戏。我找到了如何让我的元素移动,但不改变它的“原点”,或者更准确地说,改变加速度计算的原点: 事实上,我的图像是移动的,它的中心是这样定义的: imageView.c
我有一个 mysql 表,其中存储有 4 列的成员消息: message_id(主键,自增) sender_id( key ) receiver_id( key ) 消息内容 我做了很多 SELECT
我在 cuda_computation.cu 中有以下代码 #include #include #include #include void checkCUDAError(const char
我正在使用 BeautifulSoup 在 for 循环中解析数千个网站。这是我的代码片段: def parse_decision(link): t1 = time.time() de
我正在使用 OpenCV 2.4 (C++) 在灰度图像上进行寻线。这涉及一些基本的图像处理步骤,如模糊、阈值、Canny 边缘检测器、梯度滤波器或霍夫变换。我必须在数千张图像上应用寻线算法。 考虑到
当我试图连续生成四次相同的报告时,我刚刚分析了我的报告应用程序。第一个用了 1859 毫秒,而后面的只用了 400 到 600 毫秒。对此的解释是什么?我能以某种方式使用它来使我的应用程序更快吗?报告
当我打开 Storyboard文件时,由于其中包含的 VC 数量,打开它需要 1-2 分钟。加快速度的最佳做法是什么?我们应该将一些 VC 移动到不同的 Storyboard文件中吗?我们是否应该使用
我有一个包含多个页面的 UIPageViewController。每个页面都是相同的 View Controller ,但会跟踪页码并显示 PDF 的正确页面。问题是每个 PDF 页面都需要在 cur
这实际上是两个问题,但它们非常相似,为了简单起见,我想将它们放在一起: 首先:给定一个已建立的 Java 项目,除了简单的代码内优化之外,还有哪些不错的方法可以加快它的速度? 其次:在用Java从头写
我有一个包含 1000 个条目的文档,其格式类似于:
我是一名优秀的程序员,十分优秀!