- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个 复杂列表并且需要根据 bool 元素的值从中选择一个子集(我需要 hidden
值等于 FALSE
的记录)。我已经基于索引向量尝试了以下代码,但它失败了(如该输出的末尾所示):
startups <- data$startups[data$startups$hidden == FALSE]
startups <- data$startups[!as.logical(data$startups$hidden)]
Browse[1]> str(data$startups, list.len=3)
List of 50
$ :List of 23
..$ id : num 357496
..$ hidden : logi FALSE
..$ community_profile: logi FALSE
.. [list output truncated]
$ :List of 2
..$ id : num 352159
..$ hidden: logi TRUE
$ :List of 2
..$ id : num 352157
..$ hidden: logi TRUE
[list output truncated]
Browse[1]> data$startups[data$startups$hidden == FALSE]
list()
Browse[1]> data$startups[!as.logical(data$startups$hidden)]
list()
aa <- dput(head(data$startups, n=3))
list(structure(list(id = 386938, hidden = FALSE, community_profile = FALSE,
name = "Pritunl", angellist_url = "https://angel.co/pritunl",
logo_url = "https://s3.amazonaws.com/photos.angel.co/startups/i/386938-fac0b8cba76c7e9252eee6646ec5b681-medium_jpg.jpg?buster=1398401450",
thumb_url = "https://s3.amazonaws.com/photos.angel.co/startups/i/386938-fac0b8cba76c7e9252eee6646ec5b681-thumb_jpg.jpg?buster=1398401450",
quality = 0, product_desc = "Enterprise VPN/cloud networking server",
high_concept = "Enterprise cloud networking", follower_count = 1,
company_url = "http://pritunl.com", created_at = "2014-04-25T04:50:57Z",
updated_at = "2014-04-25T06:02:05Z", crunchbase_url = NULL,
twitter_url = "http://twitter.com/pritunl", blog_url = "",
video_url = "", markets = list(structure(list(id = 12, tag_type = "MarketTag",
name = "enterprise software", display_name = "Enterprise Software",
angellist_url = "https://angel.co/enterprise-software"), .Names = c("id",
"tag_type", "name", "display_name", "angellist_url")), structure(list(
id = 59, tag_type = "MarketTag", name = "open source",
display_name = "Open Source", angellist_url = "https://angel.co/open-source"), .Names = c("id",
"tag_type", "name", "display_name", "angellist_url")), structure(list(
id = 123, tag_type = "MarketTag", name = "internet infrastructure",
display_name = "Internet Infrastructure", angellist_url = "https://angel.co/internet-infrastructure"), .Names = c("id",
"tag_type", "name", "display_name", "angellist_url")), structure(list(
id = 306, tag_type = "MarketTag", name = "cloud management",
display_name = "Cloud Management", angellist_url = "https://angel.co/cloud-management"), .Names = c("id",
"tag_type", "name", "display_name", "angellist_url"))), locations = list(
structure(list(id = 2071, tag_type = "LocationTag", name = "new york",
display_name = "New York", angellist_url = "https://angel.co/new-york"), .Names = c("id",
"tag_type", "name", "display_name", "angellist_url"))),
company_size = "1-10", company_type = list(structure(list(
id = 94212, tag_type = "CompanyTypeTag", name = "startup",
display_name = "Startup", angellist_url = "https://angel.co/startup"), .Names = c("id",
"tag_type", "name", "display_name", "angellist_url"))), status = NULL,
screenshots = list(structure(list(thumb = "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/5f7410543201d583eaba1975b931f3fd-thumb_jpg.jpg",
original = "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/5f7410543201d583eaba1975b931f3fd-original.png"), .Names = c("thumb",
"original")), structure(list(thumb = "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/006c4fb50d4b10df7caf7800ee482c6b-thumb_jpg.jpg",
original = "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/006c4fb50d4b10df7caf7800ee482c6b-original.png"), .Names = c("thumb",
"original")), structure(list(thumb = "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/741225c3de5021399c0cfc33cecb8830-thumb_jpg.jpg",
original = "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/741225c3de5021399c0cfc33cecb8830-original.png"), .Names = c("thumb",
"original")), structure(list(thumb = "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/969b60b6ccda577e77b7c9a5c169b2fd-thumb_jpg.jpg",
original = "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/969b60b6ccda577e77b7c9a5c169b2fd-original.png"), .Names = c("thumb",
"original")), structure(list(thumb = "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/2b2cc3a046c5a4d20b328045ca7f0254-thumb_jpg.jpg",
original = "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/2b2cc3a046c5a4d20b328045ca7f0254-original.png"), .Names = c("thumb",
"original")), structure(list(thumb = "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/053c3a1c74fc7f39de1117770f9debef-thumb_jpg.jpg",
original = "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/053c3a1c74fc7f39de1117770f9debef-original.png"), .Names = c("thumb",
"original")), structure(list(thumb = "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/8adcf2d6a6cafc9c6b810f8359a3fedf-thumb_jpg.jpg",
original = "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/8adcf2d6a6cafc9c6b810f8359a3fedf-original.png"), .Names = c("thumb",
"original")))), .Names = c("id", "hidden", "community_profile",
"name", "angellist_url", "logo_url", "thumb_url", "quality",
"product_desc", "high_concept", "follower_count", "company_url",
"created_at", "updated_at", "crunchbase_url", "twitter_url",
"blog_url", "video_url", "markets", "locations", "company_size",
"company_type", "status", "screenshots")), structure(list(id = 385596,
hidden = FALSE, community_profile = TRUE, name = "Lariat ",
angellist_url = "https://angel.co/lariat-1", logo_url = "https://s3.amazonaws.com/photos.angel.co/startups/i/385596-29de05d584176c3972da411aed5485f0-medium_jpg.jpg?buster=1398260121",
thumb_url = "https://s3.amazonaws.com/photos.angel.co/startups/i/385596-29de05d584176c3972da411aed5485f0-thumb_jpg.jpg?buster=1398260121",
quality = 0, product_desc = "Thus far, the internet has gone from discovery to search discovery, and then social discovery, but with little focus on recall. Remembering your digital footprint is difficult. We aim to solve that problem. Lariat is a cloud-based recall engine to securely recall information from any page in your search history instantly through intuitive keyword search, not just from page titles, but from the contents and context of the underlying pages.\r\n\r\nWrangle in the information you want, easier and faster.",
high_concept = "Recall your digital footprint on the web instantly",
follower_count = 1, company_url = "http://www.lariattech.com",
created_at = "2014-04-23T13:17:47Z", updated_at = "2014-04-23T13:48:38Z",
crunchbase_url = NULL, twitter_url = "", blog_url = "", video_url = NULL,
markets = list(structure(list(id = 4, tag_type = "MarketTag",
name = "digital media", display_name = "Digital Media",
angellist_url = "https://angel.co/digital-media"), .Names = c("id",
"tag_type", "name", "display_name", "angellist_url")), structure(list(
id = 12, tag_type = "MarketTag", name = "enterprise software",
display_name = "Enterprise Software", angellist_url = "https://angel.co/enterprise-software"), .Names = c("id",
"tag_type", "name", "display_name", "angellist_url")), structure(list(
id = 59, tag_type = "MarketTag", name = "open source",
display_name = "Open Source", angellist_url = "https://angel.co/open-source"), .Names = c("id",
"tag_type", "name", "display_name", "angellist_url")), structure(list(
id = 282, tag_type = "MarketTag", name = "semantic search",
display_name = "Semantic Search", angellist_url = "https://angel.co/semantic-search"), .Names = c("id",
"tag_type", "name", "display_name", "angellist_url"))), locations = list(
structure(list(id = 1620, tag_type = "LocationTag", name = "boston",
display_name = "Boston", angellist_url = "https://angel.co/boston"), .Names = c("id",
"tag_type", "name", "display_name", "angellist_url"))),
company_size = "1-10", company_type = structure(list(), class = "AsIs"),
status = NULL, screenshots = structure(list(), class = "AsIs")), .Names = c("id",
"hidden", "community_profile", "name", "angellist_url", "logo_url",
"thumb_url", "quality", "product_desc", "high_concept", "follower_count",
"company_url", "created_at", "updated_at", "crunchbase_url",
"twitter_url", "blog_url", "video_url", "markets", "locations",
"company_size", "company_type", "status", "screenshots")), structure(list(
id = 385595, hidden = TRUE), .Names = c("id", "hidden")))
aa
)相同:
[[1]]
[[1]]$id
[1] 386938
[[1]]$hidden
[1] FALSE
[[1]]$community_profile
[1] FALSE
[[1]]$name
[1] "Pritunl"
[[1]]$angellist_url
[1] "https://angel.co/pritunl"
[[1]]$logo_url
[1] "https://s3.amazonaws.com/photos.angel.co/startups/i/386938-fac0b8cba76c7e9252eee6646ec5b681-medium_jpg.jpg?buster=1398401450"
[[1]]$thumb_url
[1] "https://s3.amazonaws.com/photos.angel.co/startups/i/386938-fac0b8cba76c7e9252eee6646ec5b681-thumb_jpg.jpg?buster=1398401450"
[[1]]$quality
[1] 0
[[1]]$product_desc
[1] "Enterprise VPN/cloud networking server"
[[1]]$high_concept
[1] "Enterprise cloud networking"
[[1]]$follower_count
[1] 1
[[1]]$company_url
[1] "http://pritunl.com"
[[1]]$created_at
[1] "2014-04-25T04:50:57Z"
[[1]]$updated_at
[1] "2014-04-25T06:02:05Z"
[[1]]$crunchbase_url
NULL
[[1]]$twitter_url
[1] "http://twitter.com/pritunl"
[[1]]$blog_url
[1] ""
[[1]]$video_url
[1] ""
[[1]]$markets
[[1]]$markets[[1]]
[[1]]$markets[[1]]$id
[1] 12
[[1]]$markets[[1]]$tag_type
[1] "MarketTag"
[[1]]$markets[[1]]$name
[1] "enterprise software"
[[1]]$markets[[1]]$display_name
[1] "Enterprise Software"
[[1]]$markets[[1]]$angellist_url
[1] "https://angel.co/enterprise-software"
[[1]]$markets[[2]]
[[1]]$markets[[2]]$id
[1] 59
[[1]]$markets[[2]]$tag_type
[1] "MarketTag"
[[1]]$markets[[2]]$name
[1] "open source"
[[1]]$markets[[2]]$display_name
[1] "Open Source"
[[1]]$markets[[2]]$angellist_url
[1] "https://angel.co/open-source"
[[1]]$markets[[3]]
[[1]]$markets[[3]]$id
[1] 123
[[1]]$markets[[3]]$tag_type
[1] "MarketTag"
[[1]]$markets[[3]]$name
[1] "internet infrastructure"
[[1]]$markets[[3]]$display_name
[1] "Internet Infrastructure"
[[1]]$markets[[3]]$angellist_url
[1] "https://angel.co/internet-infrastructure"
[[1]]$markets[[4]]
[[1]]$markets[[4]]$id
[1] 306
[[1]]$markets[[4]]$tag_type
[1] "MarketTag"
[[1]]$markets[[4]]$name
[1] "cloud management"
[[1]]$markets[[4]]$display_name
[1] "Cloud Management"
[[1]]$markets[[4]]$angellist_url
[1] "https://angel.co/cloud-management"
[[1]]$locations
[[1]]$locations[[1]]
[[1]]$locations[[1]]$id
[1] 2071
[[1]]$locations[[1]]$tag_type
[1] "LocationTag"
[[1]]$locations[[1]]$name
[1] "new york"
[[1]]$locations[[1]]$display_name
[1] "New York"
[[1]]$locations[[1]]$angellist_url
[1] "https://angel.co/new-york"
[[1]]$company_size
[1] "1-10"
[[1]]$company_type
[[1]]$company_type[[1]]
[[1]]$company_type[[1]]$id
[1] 94212
[[1]]$company_type[[1]]$tag_type
[1] "CompanyTypeTag"
[[1]]$company_type[[1]]$name
[1] "startup"
[[1]]$company_type[[1]]$display_name
[1] "Startup"
[[1]]$company_type[[1]]$angellist_url
[1] "https://angel.co/startup"
[[1]]$status
NULL
[[1]]$screenshots
[[1]]$screenshots[[1]]
[[1]]$screenshots[[1]]$thumb
[1] "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/5f7410543201d583eaba1975b931f3fd-thumb_jpg.jpg"
[[1]]$screenshots[[1]]$original
[1] "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/5f7410543201d583eaba1975b931f3fd-original.png"
[[1]]$screenshots[[2]]
[[1]]$screenshots[[2]]$thumb
[1] "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/006c4fb50d4b10df7caf7800ee482c6b-thumb_jpg.jpg"
[[1]]$screenshots[[2]]$original
[1] "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/006c4fb50d4b10df7caf7800ee482c6b-original.png"
[[1]]$screenshots[[3]]
[[1]]$screenshots[[3]]$thumb
[1] "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/741225c3de5021399c0cfc33cecb8830-thumb_jpg.jpg"
[[1]]$screenshots[[3]]$original
[1] "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/741225c3de5021399c0cfc33cecb8830-original.png"
[[1]]$screenshots[[4]]
[[1]]$screenshots[[4]]$thumb
[1] "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/969b60b6ccda577e77b7c9a5c169b2fd-thumb_jpg.jpg"
[[1]]$screenshots[[4]]$original
[1] "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/969b60b6ccda577e77b7c9a5c169b2fd-original.png"
[[1]]$screenshots[[5]]
[[1]]$screenshots[[5]]$thumb
[1] "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/2b2cc3a046c5a4d20b328045ca7f0254-thumb_jpg.jpg"
[[1]]$screenshots[[5]]$original
[1] "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/2b2cc3a046c5a4d20b328045ca7f0254-original.png"
[[1]]$screenshots[[6]]
[[1]]$screenshots[[6]]$thumb
[1] "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/053c3a1c74fc7f39de1117770f9debef-thumb_jpg.jpg"
[[1]]$screenshots[[6]]$original
[1] "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/053c3a1c74fc7f39de1117770f9debef-original.png"
[[1]]$screenshots[[7]]
[[1]]$screenshots[[7]]$thumb
[1] "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/8adcf2d6a6cafc9c6b810f8359a3fedf-thumb_jpg.jpg"
[[1]]$screenshots[[7]]$original
[1] "https://s3.amazonaws.com/screenshots.angel.co/ae/386938/8adcf2d6a6cafc9c6b810f8359a3fedf-original.png"
[[2]]
[[2]]$id
[1] 385596
[[2]]$hidden
[1] FALSE
[[2]]$community_profile
[1] TRUE
[[2]]$name
[1] "Lariat "
[[2]]$angellist_url
[1] "https://angel.co/lariat-1"
[[2]]$logo_url
[1] "https://s3.amazonaws.com/photos.angel.co/startups/i/385596-29de05d584176c3972da411aed5485f0-medium_jpg.jpg?buster=1398260121"
[[2]]$thumb_url
[1] "https://s3.amazonaws.com/photos.angel.co/startups/i/385596-29de05d584176c3972da411aed5485f0-thumb_jpg.jpg?buster=1398260121"
[[2]]$quality
[1] 0
[[2]]$product_desc
[1] "Thus far, the internet has gone from discovery to search discovery, and then social discovery, but with little focus on recall. Remembering your digital footprint is difficult. We aim to solve that problem. Lariat is a cloud-based recall engine to securely recall information from any page in your search history instantly through intuitive keyword search, not just from page titles, but from the contents and context of the underlying pages.\r\n\r\nWrangle in the information you want, easier and faster."
[[2]]$high_concept
[1] "Recall your digital footprint on the web instantly"
[[2]]$follower_count
[1] 1
[[2]]$company_url
[1] "http://www.lariattech.com"
[[2]]$created_at
[1] "2014-04-23T13:17:47Z"
[[2]]$updated_at
[1] "2014-04-23T13:48:38Z"
[[2]]$crunchbase_url
NULL
[[2]]$twitter_url
[1] ""
[[2]]$blog_url
[1] ""
[[2]]$video_url
NULL
[[2]]$markets
[[2]]$markets[[1]]
[[2]]$markets[[1]]$id
[1] 4
[[2]]$markets[[1]]$tag_type
[1] "MarketTag"
[[2]]$markets[[1]]$name
[1] "digital media"
[[2]]$markets[[1]]$display_name
[1] "Digital Media"
[[2]]$markets[[1]]$angellist_url
[1] "https://angel.co/digital-media"
[[2]]$markets[[2]]
[[2]]$markets[[2]]$id
[1] 12
[[2]]$markets[[2]]$tag_type
[1] "MarketTag"
[[2]]$markets[[2]]$name
[1] "enterprise software"
[[2]]$markets[[2]]$display_name
[1] "Enterprise Software"
[[2]]$markets[[2]]$angellist_url
[1] "https://angel.co/enterprise-software"
[[2]]$markets[[3]]
[[2]]$markets[[3]]$id
[1] 59
[[2]]$markets[[3]]$tag_type
[1] "MarketTag"
[[2]]$markets[[3]]$name
[1] "open source"
[[2]]$markets[[3]]$display_name
[1] "Open Source"
[[2]]$markets[[3]]$angellist_url
[1] "https://angel.co/open-source"
[[2]]$markets[[4]]
[[2]]$markets[[4]]$id
[1] 282
[[2]]$markets[[4]]$tag_type
[1] "MarketTag"
[[2]]$markets[[4]]$name
[1] "semantic search"
[[2]]$markets[[4]]$display_name
[1] "Semantic Search"
[[2]]$markets[[4]]$angellist_url
[1] "https://angel.co/semantic-search"
[[2]]$locations
[[2]]$locations[[1]]
[[2]]$locations[[1]]$id
[1] 1620
[[2]]$locations[[1]]$tag_type
[1] "LocationTag"
[[2]]$locations[[1]]$name
[1] "boston"
[[2]]$locations[[1]]$display_name
[1] "Boston"
[[2]]$locations[[1]]$angellist_url
[1] "https://angel.co/boston"
[[2]]$company_size
[1] "1-10"
[[2]]$company_type
list()
[[2]]$status
NULL
[[2]]$screenshots
list()
[[3]]
[[3]]$id
[1] 385595
[[3]]$hidden
[1] TRUE
aa[data$startups$hidden == FALSE]
hidden
=
FALSE
用于第一个和第二个元素):
list()
"Subsets of the elements of a vector may be selected by appending to the name of the vector an index vector in square brackets. More generally any expression that evaluates to a vector may have subsets of its elements similarly selected by appending an index vector in square brackets immediately after the expression".
"subsetting a list works in exactly the same way as subsetting an atomic vector".
最佳答案
问题中的示例数据是一个长度为 3 的列表,我们将其称为 L
.它的每个组件本身就是一个列表,每个子列表的一个组件是 hidden
.我们可以提取hidden
将子列表的组件转换为名为 hidden
的逻辑向量.使用该逻辑向量,我们可以对原始列表进行子集 L
给出一个新列表,只包含那些带有 hidden
的子列表TRUE
的组件.
hidden <- sapply(L, "[[", "hidden") # create logical vector hidden
L[hidden]
> length(L[hidden])
[1] 1
L[hidden][[1]]
或
L[[which(hidden)]]
会给那个单一的组件。
关于r - 通过逻辑索引向量对列表进行子集化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/22372758/
当我尝试加载库 Raster 时,我收到如下错误: 错误:inDL(x, as.logic(local), as.logic(now), ...) 中的“raster”的包或命名空间加载失败:无法加载
当我尝试加载库 Raster 时,我收到如下错误: 错误:inDL(x, as.logic(local), as.logic(now), ...) 中的“raster”的包或命名空间加载失败:无法加载
望着help section about_Comparison_Operators of PowerShell我是这样理解的: PS C:\> $false,$false -eq $true PS C
我刚刚修改了旧代码,现在似乎没有任何效果。请您指导我哪里出错了。 一些不起作用的事情是: 以前,焦点始终停留在屏幕上唯一的输入字段上。 (现在不行了),代码中的 if else 条件也不起作用。 On
请帮我找到一个使用普通 'ol javascript 的解决方案(我无法使用外部框架)。此外,CSS :hover 选择器不适用于现实世界的实现。 注册事件发生的事情设置所有调用最后注册事件数组项。
我想创建一个软件来为残障 child 交通规划公交路线(及其最佳载客量)。 这些总线具有以下规范: m 个座位(最多 7 个 - 因为有司机和助理) o 轮椅“座位”(最多 4 个) 固定的最大负载量
有人能帮我吗?似乎我的 for 逻辑根本不起作用,因为它一直在上午 12:00 返回我的开始时间 这是我的代码 Sub forlogic() Dim i As Single Dim t
我正在尝试设置 OR两个切片器过滤器之间的逻辑。两个切片器来自相同的数据集。以下是更多详细信息: 我的源表: 带切片器的视觉效果: 我的目标是,如果我从切片器 1 和切片器 2 中选择任何值,我的视觉
我有以下 C 语句: int res = x & (x ^ y); 有没有办法做同样的事情,但每次只使用一次x和y? 例如: x | (~x & y) == x | y 最佳答案 是的,通过扩展 xo
我正在创建 Azure 逻辑应用程序以将新的 Sharepoint 文件添加到 Azure Blob。 Sharepoint 由我的公司运行,我使用我的凭据登录来为逻辑应用程序创建 Sharepoin
我有一个问题要求为给定函数合成最简单的乘积表达式总和。基本上,如果 AB == CD,则函数为 1,否则为 0,结果如下: (!A && !B && !C && !D) || (!A && B &&
我正在尝试确定是否可以在不溢出的情况下计算两个 32 位整数的总和,同时仅使用某些按位运算符和其他运算符。因此,如果整数 x 和 y 可以相加而不会溢出,则以下代码应返回 1,否则返回 0。 ((((
处理乍一看需要许多嵌套 if 语句的复杂业务逻辑的好方法是什么? 例子: 折扣券。可能: 1a) 超值折扣 1b) 百分比折扣 2a) 正常折扣 2b) 累进折扣 3a) 需要访问优惠券 3b) 不需
假设我有一个“numbers”对象数组,其中包含“startNo”整数和“endNo”整数。 数组中可以有多个“数字”,我想获取一个包含修改对象的新数组,该数组仅具有不重叠的范围。 例如:如果数组有:
我在这个问题上遇到了困难。我正在使用 JavaScript。 我有一个文本区域,用于检测 @ 输入并将其位置存储在数组中。 var input = "@a @b @c" //textarea var
默认 IN 使用 OR 基本逻辑。有没有办法在范围内使用 AND 基本逻辑。 例如下面的查询 SELECT ItemId,CategoryID FROM ItemCategories WHERE Ca
我想在您将鼠标悬停在网站图像上时添加叠加层。我在这里实现了这个,它工作正常http://jsfiddle.net/stujLbjh/ 这是js代码: var divs = document.query
这个问题在这里已经有了答案: Which is faster: x>2 是否比 x>>31 快?换句话说,sar x, 2 是否比 sar x, 31 快?我做了一些简单的测试,他们似乎有相同的速度
我有grails criteriaQuery,我在这里再次检查OR逻辑,就像这样一个状态变量: or { eq("status", Status.ONE) eq("status",
我有grails criteriaQuery,我在这里再次检查OR逻辑,就像这样一个状态变量: or { eq("status", Status.ONE) eq("status",
我是一名优秀的程序员,十分优秀!