gpt4 book ai didi

r - 在 R 中创建子集数据的二分搜索类似概念

转载 作者:行者123 更新时间:2023-12-05 00:17:39 26 4
gpt4 key购买 nike

我有以下数据集 w和关键变量 x对于两种情况。

Case 1:
x = 4
w = c(1,2,4,4,4,4,6,7,8,9,10,11,12,14,15)

Case2:
x = 12
w = c(1,2,4,4,4,4,6,7,8,9,10,11,12,14,15)

我想创建一个函数来搜索 x通过数据集 w并将根据 x 将原始数据集子集到较小的数据集的位置在 w .输出将是具有与搜索关键字相同的上限值的较小尺寸的数据集。下面是我试图用 R 编写的函数:
create_chunk <- function(val, tab, L=1L, H=length(tab))
{
if(H >= L)
{
mid = L + ((H-L)/2)
## If the element is present within middle length
if(tab[mid] > val)
{
## subset the original data in reduced size and again do mid position value checking
## then subset the data
} else
{
mid = mid + (mid/2)
## Increase the mid position to go for right side checking
}
}
}

在我正在寻找的输出中:
Output for Case 1:
Dataset containing: 1,2,4,4,4,4

Output for Case 2:
Dataset containing: 1,2,4,4,4,4,6,7,8,9,10,11,12


Please note:
1. Dataset may contain duplicate values for search key and
all the duplicate values are expected in the output dataset.
2. I have huge size datasets (say around 2M rows) from
where I am trying to subset smaller dataset as per my requirement of search key.

新更新:案例 3

输入数据:
                 date    value size     stockName
1 2016-08-12 12:44:43 10093.40 4 HWA IS Equity
2 2016-08-12 12:44:38 10093.35 2 HWA IS Equity
3 2016-08-12 12:44:47 10088.00 2 HWA IS Equity
4 2016-08-12 12:44:52 10089.95 1 HWA IS Equity
5 2016-08-12 12:44:53 10089.95 1 HWA IS Equity
6 2016-08-12 12:44:54 10088.95 1 HWA IS Equity

搜索关键字是: 10089.95在值列中。

预期输出为:
                 date    value size     stockName
1 2016-08-12 12:44:47 10088.00 2 HWA IS Equity
2 2016-08-12 12:44:54 10088.95 1 HWA IS Equity
3 2016-08-12 12:44:52 10089.95 1 HWA IS Equity
4 2016-08-12 12:44:53 10089.95 1 HWA IS Equity

最佳答案

您可以执行此操作来处理重复值。如果有重复,将返回其最高位置。请注意 A应该是非递减的。

binSearch <- function(A, value, left=1, right=length(A)){
if (left > right)
return(-1)
middle <- (left + right) %/% 2
if (A[middle] == value){
while (A[middle] == value)
middle<-middle+1
return(middle-1)
}
else {
if (A[middle] > value)
return(binSearch(A, value, left, middle - 1))
else
return(binSearch(A, value, middle + 1, right))
}
}

w[1:binSearch(w,x1)]
# [1] 1 2 4 4 4 4
w[1:binSearch(w,x2)]
# [1] 1 2 4 4 4 4 6 7 8 9 10 11 12

但是,正如评论中提到的,您可以简单地使用 findInterval达到同样的目的:
w[1:findInterval(x1,w)]

如您所知,二分查找的顺序为 log(n)但正如 ?findInterval 中所述,它还受益于 log(n)因为第一个参数的长度是一个:

The function findInterval finds the index of one vector x in another, vec, where the latter must be non-decreasing. Where this is trivial, equivalent to apply( outer(x, vec, ">="), 1, sum), as a matter of fact, the internal algorithm uses interval search ensuring O(n * log(N)) complexity where n <- length(x) (and N <- length(vec)). For (almost) sorted x, it will be even faster, basically O(n).



编辑

根据您的编辑和新设置,您可以这样做(假设您的数据在 df 中):
o <- order(df$value)
rows <- o[1:findInterval(key, df$value[o])]
df[rows,]

或者等效地,使用建议的 binSearch功能:
o <- order(df$value)
rows <- o[1:binSearch(df$value[o], key)]
df[rows,]

数据
x1 <- 4
x2 <- 12
w <- c(1,2,4,4,4,4,6,7,8,9,10,11,12,14,15)
key <- 10089.95

关于r - 在 R 中创建子集数据的二分搜索类似概念,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39632507/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com