- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个概念,希望你能帮助澄清:
以下三种引用 PySpark 数据框中列的方式有什么区别。我知道不同的情况需要不同的形式,但不知道为什么。
F.count(df.col)
df['col'] == 0
df.filter(F.col('col').isNull())
最佳答案
在大多数实际应用中,几乎没有区别。但是,它们是通过调用不同的底层函数(source)来实现的,因此并不完全相同。
我们可以用一个小例子来说明:
df = spark.createDataFrame(
[(1,'a', 0), (2,'b',None), (None,'c',3)],
['col', '2col', 'third col']
)
df.show()
#+----+----+---------+
#| col|2col|third col|
#+----+----+---------+
#| 1| a| 0|
#| 2| b| null|
#|null| c| 3|
#+----+----+---------+
df.col
这是最不灵活的。您只能引用有效的列,以便使用
.
访问。运算符(operator)。这排除了包含空格或特殊字符的列名以及以整数开头的列名。
df.__getattr__("col")
.
print(df.__getattr__.__doc__)
#Returns the :class:`Column` denoted by ``name``.
#
# >>> df.select(df.age).collect()
# [Row(age=2), Row(age=5)]
#
# .. versionadded:: 1.3
使用
.
语法,您只能访问此示例数据框的第一列。
>>> df.2col
File "<ipython-input-39-8e82c2dd5b7c>", line 1
df.2col
^
SyntaxError: invalid syntax
在后台,它会检查列名是否包含在
df.columns
中。然后返回
pyspark.sql.Column
指定的。
df["col"]
这将调用
df.__getitem__
.你有更多的灵 active ,你可以做任何
__getattr__
可以,另外你可以指定任何列名。
df["2col"]
#Column<2col>
再一次,在后台检查了一些条件,在这种情况下,
pyspark.sql.Column
返回由输入字符串指定的。
list
或
tuple
)或列表达式。
from pyspark.sql.functions import expr
df[['col', expr('`third col` IS NULL')]].show()
#+----+-------------------+
#| col|(third col IS NULL)|
#+----+-------------------+
#| 1| false|
#| 2| true|
#|null| false|
#+----+-------------------+
请注意,在多列的情况下,
__getitem__
只是调用
pyspark.sql.DataFrame.select
.
df[2]
#Column<third col>
3.
pyspark.sql.functions.col
这是 Spark 本地选择列并返回
expression
的方式。 (这是所有列函数的情况),它根据给定的名称选择列。当您需要指定需要列而不是字符串文字时,这是有用的简写。
"col"
中的任一值。或
"third col"
基于
"2col"
的值:
from pyspark.sql.functions import when
df.withColumn(
'new',
f.when(df['2col'].isin(['a', 'c']), 'third col').otherwise('col')
).show()
#+----+----+---------+---------+
#| col|2col|third col| new|
#+----+----+---------+---------+
#| 1| a| 0|third col|
#| 2| b| null| col|
#|null| c| 3|third col|
#+----+----+---------+---------+
糟糕,我不是这个意思。 Spark 认为我想要文字字符串
"col"
和
"third col"
.相反,我应该写的是:
from pyspark.sql.functions import col
df.withColumn(
'new',
when(df['2col'].isin(['a', 'c']), col('third col')).otherwise(col('col'))
).show()
#+----+----+---------+---+
#| col|2col|third col|new|
#+----+----+---------+---+
#| 1| a| 0| 0|
#| 2| b| null| 2|
#|null| c| 3| 3|
#+----+----+---------+---+
因为 col() 在没有检查的情况下创建了列表达式,这有两个有趣的副作用。
age = col('dob') / 365
if_expr = when(age < 18, 'underage').otherwise('adult')
df1 = df.read.csv(path).withColumn('age_category', if_expr)
df2 = df.read.parquet(path)\
.select('*', age.alias('age'), if_expr.alias('age_category'))
age
生成
Column<b'(dob / 365)'>
if_expr
生成
Column<b'CASE WHEN ((dob / 365) < 18) THEN underage ELSE adult END'>
关于dataframe - PySpark DataFrame 列引用 : df. col vs. df ['col' ] vs. F.col ('col')?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55105363/
努力理解标题中 5 个示例之间的区别。系列与数据框有一些用例吗?什么时候应该使用一个而不是另一个?哪些是等价的? 最佳答案 df[x] — 使用变量 x 索引列。返回 pd.Series df[[x]
在使用Jupyter Notebook时,我必须为问题标题中提到的df.info()、df.head()等单独留出空格. 有没有办法像第二张图片那样把所有这些都放在一个 block 中,并显示所有信息
我想求三列之和,我采取的方法如下: In [14]: a_pd = pd.DataFrame({'a': np.arange(3), 'b': [5, 7,
我想我们大多数人已经使用过这样的东西(至少如果你正在使用 tidyverse): library(tidyverse) example % select(- mpg) 我的问题: 我知道这部分有一
我有一个 DF,里面有大约 20,000 行。我构建了一个 Python 脚本来对这些数据(包括数据透视表)运行大量清理和数学运算。 我想将此 DF 拆分为 3 个独立的 DF,然后根据列值将这 3
我什至不知道如何表达这一点,但在 Python 中有没有一种方法可以引用等号之前的文本,而无需实际再次编写? ** 编辑 - 我在 Jupyter 中使用 python3 我似乎用了半辈子的时间来写作
在 df1 中,每个单元格值都是我想要从 df2 中获取的行的索引。 我想获取 df2 trial_ms 列中行的信息,然后根据获取的 df2 列重命名 df1 中的列。 可重现的 DF: # df1
我想转换此表 0 thg John 3.0 1 thg James 4.0 2 mol NaN 5.0 3 mol NaN NaN 4
我有一个数据框,我想从中提取 val 中的值大于 15 以及 val 不是 NA: df[ !is.na(df$val) & df$val > 15, ] 由于我假设在 R 中经常需要这样的比较,所
鉴于 coming deprecation of df.ix[...] 如何替换这段代码中的 .ix? df_1 = df.ix[:, :datetime.time(16, 50)] d
任何我可以帮助我说出 Pandas 中这两个语句之间的区别-python df.where(df['colname'] == value) 和 df[(df['colname'] == value)]
考虑 df Index A B C 0 20161001 0 24.5 1 20161001 3 26.5 2
所以我需要按“fh_status”列对行进行分组,然后对每个组执行“gini”的最小值、平均值和最大值(将有三个)。我想出了这段代码: m = (df2.groupby(['fh_status']).
我尝试计算不同公司/股票的一些 KPI。我的股票信息位于 df 中,具有以下结构 Ticker Open High Low Ad
我有一个看起来像这样的 df: gene ID Probe ID Chromosome Start Stop 1: H3F3A 539154271
nn_idx_df 包含与 xyz_df 的索引匹配的索引值。如何从 xyz_df 中的 H 列获取值并在 nn_idx_df 中创建新列以匹配 output_df 中所示的结果。我可以解决这个问题,
我目前的 DF 看起来像这样 Combinations Count 1 ('IDLY', 'VADA') 3734 6 ('DOSA', 'IDLY')
我看到了几个与此相关的问题,但我发现这些技巧都不起作用。 我正在尝试根据第二个数据帧的值填充数据帧的所有 NaN 值。第一个 df 很大,第二个 df 将充当某种键。 DF1 Par
我有两个数据帧,df1 和 df2。每个数据帧的唯一标识符是“ID”和“Prop_Number”。我需要将 df1 中的 Num1、2 和 3 列复制到 df2、1_Num 中的相应列...但我不确定
我有以下数据框: 注意:日期是索引 city morning afternoon evening midnight date 2014-05-01 Y
我是一名优秀的程序员,十分优秀!