- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我无法理解以下 Coq 类别定义(定义 here ),它涉及 Setoid
。而且我不明白为什么 Setoid
是必要的或它在这里的作用。
Class Category O `{!Arrows O} `{∀ x y: O, Equiv (x ⟶ y)}
`{!CatId O} `{!CatComp O}: Prop :=
{ arrow_equiv :> ∀ x y, Setoid (x ⟶ y)
; comp_proper :> ∀ x y z, Proper ((=) ==> (=) ==> (=)) (comp x y z)
; comp_assoc :> ArrowsAssociative O
; id_l :> ∀ x y, LeftIdentity (comp x y y) cat_id
; id_r :> ∀ x y, RightIdentity (comp x x y) cat_id }.
(* note: no equality on objects. *)
到目前为止我学到的类别的基本概念只需要
我知道 Setoid 是关于等价类的,但是我看不出 Setoids 是从哪里来的。有人可以帮忙解释一下上面的定义,并解释一下与没有 Setoids 的通常类别定义的区别吗?
最佳答案
让我引用 J. Gross、A. Chlipala、D.I. 的论文中的 setoids 小节(第 2.4 节)。斯皮瓦克 -- Experience Implementing a Performant Category-Theory Library in Coq (2014):
A setoid [5] is a carrier type equipped with an equivalence relation; a map of setoids is a function between the carrier types and a proof that the function respects the equivalence relations of its domain and codomain. Many authors [11, 12, 15, 18] choose to use a setoid of morphisms, which allows for the definition of the category of set(oid)s, as well as the category of (small) categories, without assuming functional extensionality, and allows for the definition of categories where the objects are quotient types.
上面提到的 [12] 来源是 Math-Classes 库。然而,作者随后提出警告:
However, there is significant overhead associated with using setoids everywhere, which can lead to slower compile times. Every type that we talk about needs to come with a relation and a proof that this relation is an equivalence relation. Every function that we use needs to come with a proof that it sends equivalent elements to equivalent elements. Even worse, if we need an equivalence relation on the universe of “types with equivalence relations,” we need to provide a transport function between equivalent types that respects the equivalence relations of those types.
关于coq - 如何理解Setoid对类的定义?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40445387/
我正在尝试理解 Coq 定理: Theorem thm0 : UseCl Pos (PredVP (UsePN john_PN) walk_V) -> UseCl Pos
编辑 Require Import Bool List ZArith. Variable A: Type. Inductive error := | Todo. Induc
我试图在 Coq 中证明以下引理: Lemma not_eq_S2: forall m n, S m <> S n -> m <> n. 这似乎很容易,但我不知道如何完成证明。有人可以帮帮我吗? 谢谢
我想查看我的证明中使用的所有公理。 获取此类信息的最简单方法是什么? 我将使用哪些命令、脚本或工具? 我对所有公理或所有使用过的公理感兴趣。 最佳答案 你应该使用 Print Assumptions
我想以某种方式限制在归纳定义中允许什么样的输入构造函数。说我想说定义二进制数如下: Inductive bin : Type := | O : bin | D : bin -> bin |
Coq 标准库中是否有对自然数进行欧几里德除法的函数?我一直无法找到一个。如果没有,那么从数学上讲,是否有理由不应该有一个? 我想要这个的原因是因为我试图将一个列表分成两个较小的列表。我希望一个列表的
我在将参数传递给 coq 中的产品类型时遇到问题。我有一个看起来像这样的定义, Definition bar (a:Type) := a->Type. 我需要定义一个函数,它接收“a”和“ba
这是本在线类(class)中出现的证明https://softwarefoundations.cis.upenn.edu/plf-current/StlcProp.html#lab222 . Proo
在命题和谓词演算中证明了数十个引理后(有些比其他的更具挑战性,但通常仍然可以在 intro-apply-destruct 自动驾驶仪上证明)我从 ~forall 开始打了一个并立即被捕获。显然,我缺乏
我正在学习命题逻辑和推理规则。析取三段论规则指出,如果我们的前提中有(P 或 Q),并且也有(非 P);然后我们可以到达Q。 我一生都无法弄清楚如何在 Coq 中做到这一点。假设我有: H : A \
从 Coq 引用手册 (8.5p1) 来看,我的印象是 revert是 intro 的倒数,但 generalize 也是如此在某种程度上。例如,revert和 generalize dependen
假设我知道某些自然数是好的。我知道 1 很好,如果 n 很好,那么 3n 就是,如果 n 很好,那么 n+5 就是,这些只是构造好数字的方法。在我看来,这在 Coq 中的充分形式化是 Inductiv
通常在 Coq 中,我发现自己在做以下事情:我有证明目标,例如: some_constructor a c d = some_constructor b c d 而我真的只需要证明a = b因为无论如
我希望能够为不同的归纳定义定义相同的 Coq 符号,并根据参数的类型区分这些符号。 这是一个最小的例子: Inductive type : Type := | TBool : type. Induct
有没有办法对 Coq 的类型类使用递归?例如,在为列表定义显示时,如果您想调用 show递归列表函数,那么你将不得不使用这样的固定点: Require Import Strings.String. R
假设我有一个解决某种引理的奇特策略: Ltac solveFancy := some_preparation; repeat (first [important_step1 | importa
我是 Coq 的新手。我注意到可以使用在 Coq 中定义空集 Inductive Empty_set : Set :=. 是否也可以将函数从空集定义为另一个通用集/类型? 如果是这样怎么办? 最佳答案
有人能给我一个 Coq 中存在实例化和存在泛化的简单例子吗?当我想证明exists x, P ,其中 P是一些 Prop使用 x ,我经常想命名x (如 x0 或类似的),并操纵 P。这可以是 Coq
我见过很多在功能上相互重叠的 Coq 策略。 例如,当您在假设中有确切的结论时,您可以使用 assumption , apply , exact , trivial ,也许还有其他人。其他示例包括 d
我需要使用标准库中称为 Coq.Arith.PeanoNat ( https://coq.inria.fr/library/Coq.Arith.PeanoNat.html ) 的部分。 我尝试过导入整
我是一名优秀的程序员,十分优秀!