gpt4 book ai didi

agda - 卡在异质相等的证明上

转载 作者:行者123 更新时间:2023-12-04 23:50:17 25 4
gpt4 key购买 nike

我有一个二进制数表示,加上一些与 Nat 的转换:

open import Data.Nat
open import Data.Nat.Properties
open import Function
open import Relation.Binary.PropositionalEquality hiding (trans; cong; subst; sym)
open import Relation.Binary.HeterogeneousEquality
open import Data.Unit
open import Algebra
module CS = CommutativeSemiring commutativeSemiring

data Bin : ℕ → Set where
zero : Bin zero
2*n : ∀ {n} → Bin n → Bin (n + n)
2*n+1 : ∀ {n} → Bin n → Bin (suc (n + n))

suc-lem : ∀ n → suc (suc (n + n)) ≡ suc n + suc n
suc-lem zero = refl
suc-lem (suc n) rewrite
CS.+-comm n (suc n)
| suc-lem n | CS.+-comm n (suc (suc n))
| CS.+-comm n (suc n) = refl

inc : ∀ {n} → Bin n → Bin (suc n)
inc zero = 2*n+1 zero
inc (2*n b) = 2*n+1 b
inc (2*n+1 {n} b) rewrite suc-lem n = 2*n (inc b)

nat2bin : (n : ℕ) → Bin n
nat2bin zero = zero
nat2bin (suc n) = inc (nat2bin n)

bin2nat : ∀ {n} → Bin n → ℕ
bin2nat {n} b = n

我认为我需要异构相等来证明这里的事情,因为通常不明显两个 Bin-s 的 Nat 索引相等。不过,我对 Agda 缺乏经验,所以请告诉我该方法是否被误导。

我坚持以下几点:
lem : ∀ n → 2*n+1 (inc (nat2bin n)) ≅ inc (inc (2*n+1 (nat2bin n)))
lem zero = refl
lem (suc n) =
subst
(λ b → 2*n+1 (inc (inc (nat2bin n))) ≅ inc (inc b))
(sym $ lem ?) ?

显而易见的是插入 n进入 sym $ lem ? ,但这会导致错误,提示 suc (n + n) != n + suc n .

我想知道为什么会发生这种情况或如何提供帮助。

最佳答案

进口:

open import Level hiding (zero; suc)
open import Function
open import Relation.Binary.HeterogeneousEquality
renaming (sym to hsym; trans to htrans; cong to hcong; subst to hsubst)
open import Relation.Binary.PropositionalEquality
open import Data.Nat
open import Data.Fin hiding (_+_)
open import Algebra
open import Data.Nat.Properties
module ℕplus = CommutativeSemiring commutativeSemiring

我已经重新安排了你的 inc稍微简化一下:
inc : ∀ {n} → Bin n → Bin (suc n)
inc zero = 2*n+1 zero
inc (2*n b) = 2*n+1 b
inc (2*n+1 {n} b) = subst (Bin ∘ suc) (ℕplus.+-comm n (suc n)) (2*n (inc b))

引理:
lem : ∀ n → 2*n+1 (inc (nat2bin n)) ≅ inc (inc (2*n+1 (nat2bin n)))
lem zero = refl
lem (suc n) = {!!}

孔的类型是
2*n+1 (inc (inc (nat2bin n))) ≅
inc
(subst ((λ {.x} → Bin) ∘ suc) (ℕplus.+-comm (suc n) (suc (suc n)))
(2*n (inc (inc (nat2bin n)))))

所以我们需要像标准库中的 subst-removable 这样的东西:
≡-subst-removable : ∀ {a p} {A : Set a}
(P : A → Set p) {x y} (eq : x ≡ y) z →
P.subst P eq z ≅ z
≡-subst-removable P refl z = refl

的类型
hsym $
≡-subst-removable
(Bin ∘ suc)
(ℕplus.+-comm (suc n) (suc (suc n)))
(2*n $ inc $ inc $ nat2bin n)


(2*n $ inc $ inc $ nat2bin n) ≅
subst ((λ {.x} → Bin) ∘ suc) (ℕplus.+-comm (suc n) (suc (suc n)))
(2*n $ inc $ inc $ nat2bin n)

几乎是我们所需要的。现在我们要添加 hcong inc ,但编译器拒绝它。
这是 cong的实现:
cong : ∀ {a b} {A : Set a} {B : A → Set b} {x y}
(f : (x : A) → B x) → x ≅ y → f x ≅ f y
cong f refl = refl

所以 xy必须是同一类型 A , 而我们的 subst改变类型。
这是 hcong的实现,我们需要:
hcong' : {α β γ : Level} {I : Set α} {i j : I}
-> (A : I -> Set β) {B : {k : I} -> A k -> Set γ} {x : A i} {y : A j}
-> i ≡ j
-> (f : {k : I} -> (x : A k) -> B x)
-> x ≅ y
-> f x ≅ f y
hcong' _ refl _ refl = refl

最后证明:
lem : ∀ n → 2*n+1 (inc (nat2bin n)) ≅ inc (inc (2*n+1 (nat2bin n)))
lem zero = refl
lem (suc n) =
hcong'
(Bin ∘ suc)
(ℕplus.+-comm (suc n) (suc (suc n)))
inc
$ hsym
$ ≡-subst-removable
(Bin ∘ suc)
(ℕplus.+-comm (suc n) (suc (suc n)))
(2*n $ inc $ inc $ nat2bin n)

此外,我们可以合并 subst-removablecong :
≡-cong-subst-removable : {α β γ : Level} {I : Set α} {i j : I}
-> (A : I -> Set β) {B : {k : I} -> A k -> Set γ}
-> (e : i ≡ j)
-> (x : A i)
-> (f : {k : I} -> (x : A k) -> B x)
-> f (subst A e x) ≅ f x
≡-cong-subst-removable _ refl _ _ = refl

lem' : ∀ n → 2*n+1 (inc (nat2bin n)) ≅ inc (inc (2*n+1 (nat2bin n)))
lem' zero = refl
lem' (suc n) = hsym $
≡-cong-subst-removable
(Bin ∘ suc)
(ℕplus.+-comm (suc n) (suc (suc n)))
(2*n $ inc $ inc $ nat2bin n)
inc

顺便说一句,皮尔斯的意思是这种数据类型,我想:
data Bin : Set where
zero : Bin
2*n : Bin → Bin
2*n+1 : Bin → Bin

顺便说一句,可以在没有其他定义的情况下证明您的人为示例:
contrived-example : {n : ℕ} {f : Fin (n + suc n)}
-> f ≅ fromℕ (n + suc n)
-> f ≅ fromℕ (suc n + n)
contrived-example {n} eq = htrans eq $ hcong fromℕ $ ≡-to-≅ $ ℕplus.+-comm n (suc n)

BTW3, hsubst-ix1 可以减少很多,因为你使用异构相等并且不需要证明类型的相等:
hsubst' : {C1 C2 : Set} {x : C1} {y : C2}
-> (P : {C : Set} -> C -> Set)
-> x ≅ y
-> P x
-> P y
hsubst' _ refl x = x

contrived-example' :
∀ n
→ (f : Fin (n + suc n))
→ (fromℕ (n + suc n) ≅ fromℕ (suc n + n))
→ (f ≅ fromℕ (n + suc n))
→ (f ≅ fromℕ (suc n + n))
contrived-example' n f eq p = hsubst' (λ f' → f ≅ f') eq p

关于agda - 卡在异质相等的证明上,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24139810/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com