gpt4 book ai didi

scala - 无法在简单示例上从 spark ML 运行 RandomForestClassifier

转载 作者:行者123 更新时间:2023-12-04 23:18:31 24 4
gpt4 key购买 nike

我试图运行实验 RandomForestClassifier来自 spark.ml包(版本 1.5.2)。我使用的数据集来自 LogisticRegression Spark ML guide 中的示例.

这是代码:

import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.sql.Row

// Prepare training data from a list of (label, features) tuples.
val training = sqlContext.createDataFrame(Seq(
(1.0, Vectors.dense(0.0, 1.1, 0.1)),
(0.0, Vectors.dense(2.0, 1.0, -1.0)),
(0.0, Vectors.dense(2.0, 1.3, 1.0)),
(1.0, Vectors.dense(0.0, 1.2, -0.5))
)).toDF("label", "features")

val rf = new RandomForestClassifier()

val model = rf.fit(training)

这是错误,我得到:

java.lang.IllegalArgumentException: RandomForestClassifier was given input with invalid label column label, without the number of classes specified. See StringIndexer.
at org.apache.spark.ml.classification.RandomForestClassifier.train(RandomForestClassifier.scala:87)
at org.apache.spark.ml.classification.RandomForestClassifier.train(RandomForestClassifier.scala:42)
at org.apache.spark.ml.Predictor.fit(Predictor.scala:90)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:48)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:53)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:55)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:57)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:59)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:61)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:63)
at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:65)
at $iwC$$iwC$$iwC$$iwC.<init>(<console>:67)
at $iwC$$iwC$$iwC.<init>(<console>:69)
at $iwC$$iwC.<init>(<console>:71)
at $iwC.<init>(<console>:73)
at <init>(<console>:75)
at .<init>(<console>:79)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065)
at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1340)
at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819)
at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857)
at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902)
at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814)
at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657)
at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945)
at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059)
at org.apache.spark.repl.Main$.main(Main.scala:31)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:674)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:120)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

当函数尝试计算列 "label" 中的类数时会出现问题。 .

正如您在 source code of RandomForestClassifier 中的第 84 行所见, 函数调用 DataFrame.schema带参数的函数 "label" .此调用正常并返回 org.apache.spark.sql.types.StructField目的。
然后,函数 org.apache.spark.ml.util.MetadataUtils.getNumClasses叫做。由于它没有返回预期的输出,因此在第 87 行引发异常。

快速浏览 getNumClasses source code 后,我想这个错误是由于 colmun "label" 中的数据造成的。两者都不是 BinaryAttribute都不是 NominalAttribute . 但是,我不知道如何解决这个问题。

我的问题:

我该如何解决这个问题?

非常感谢您阅读我的问题并提供帮助!

最佳答案

让我们首先修复导入以消除歧义

import org.apache.spark.ml.classification.RandomForestClassifier
import org.apache.spark.ml.feature.{StringIndexer, VectorIndexer}
import org.apache.spark.ml.{Pipeline, PipelineStage}
import org.apache.spark.ml.linalg.Vectors

我将使用您使用的相同数据:
val training = sqlContext.createDataFrame(Seq(
(1.0, Vectors.dense(0.0, 1.1, 0.1)),
(0.0, Vectors.dense(2.0, 1.0, -1.0)),
(0.0, Vectors.dense(2.0, 1.3, 1.0)),
(1.0, Vectors.dense(0.0, 1.2, -0.5))
)).toDF("label", "features")

然后创建管道阶段:
val stages = new scala.collection.mutable.ArrayBuffer[PipelineStage]()
  • 对于分类,重新索引类:


  • val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(training)
  • 使用 VectorIndexer 识别分类特征


  • val featuresIndexer = new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories(10).fit(training)
    stages += featuresIndexer

    val tmp = featuresIndexer.transform(labelIndexer.transform(training))
  • 学习随机森林


  • val rf = new RandomForestClassifier().setFeaturesCol(featuresIndexer.getOutputCol).setLabelCol(labelIndexer.getOutputCol)

    stages += rf
    val pipeline = new Pipeline().setStages(stages.toArray)

    // Fit the Pipeline
    val pipelineModel = pipeline.fit(tmp)

    val results = pipelineModel.transform(training)

    results.show

    //+-----+--------------+---------------+-------------+-----------+----------+
    //|label| features|indexedFeatures|rawPrediction|probability|prediction|
    //+-----+--------------+---------------+-------------+-----------+----------+
    //| 1.0| [0.0,1.1,0.1]| [0.0,1.0,2.0]| [1.0,19.0]|[0.05,0.95]| 1.0|
    //| 0.0|[2.0,1.0,-1.0]| [1.0,0.0,0.0]| [17.0,3.0]|[0.85,0.15]| 0.0|
    //| 0.0| [2.0,1.3,1.0]| [1.0,3.0,3.0]| [14.0,6.0]| [0.7,0.3]| 0.0|
    //| 1.0|[0.0,1.2,-0.5]| [0.0,2.0,1.0]| [1.0,19.0]|[0.05,0.95]| 1.0|
    //+-----+--------------+---------------+-------------+-----------+----------+

    引用文献:关于第 1 步和第 2 步,如果您想了解更多关于 Feature Transformer 的详细信息,我建议您阅读官方文档 here .

    关于scala - 无法在简单示例上从 spark ML 运行 RandomForestClassifier,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33942519/

    24 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com