- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
Gauss function对于正整数,在 x = 1/n 处具有无限数量的跳跃不连续性。
我想画高斯函数图。
使用 Maxima cas 我可以用简单的命令绘制它:
f(x):= 1/x - floor(1/x); plot2d(f(x),[x,0,1]);
但结果不好(x=0附近应该是here)
Maxima 还声称:
plot2d:表达式在绘图中的某处计算为非数字值
范围。
我可以定义 picewise 函数(在 x = 1/n 处的跳跃不连续性,对于正整数)
所以我尝试了:
define( g(x), for i:2 thru 20 step 1 do if (x=i) then x else (1/x) - floor(1/x));
但它不起作用。
我还可以使用 chebyshew 多项式来逼近函数(例如:Corless、Robert、Fillion、Nicolas 从后向误差分析的角度对数值方法的研究生介绍)
如何正确地做到这一点?
最佳答案
对于 plot2d
,您可以设置 adapt_depth
和 nticks
参数。默认值分别为 5 和 29。 set_plot_option()
(即不带参数)返回当前的选项值列表。如果您增加 adapt_depth
和/或 nticks
,则 plot2d
将使用更多点进行绘图。也许这让这个数字看起来足够好。
另一种方法是使用draw2d
函数(在draw
包中)并明确告诉它绘制每个线段。我们知道在 1/k 处存在不连续点,因为 k = 1, 2, 3, .... 我们必须决定要绘制多少段。比方说 20。
(%i6) load (draw) $
(%i7) f(x):= 1/x - floor(1/x) $
(%i8) makelist (explicit (f, x, 1/(k + 1), 1/k), k, 1, 20);
(%o8) [explicit(f,x,1/2,1),explicit(f,x,1/3,1/2),
explicit(f,x,1/4,1/3),explicit(f,x,1/5,1/4),
explicit(f,x,1/6,1/5),explicit(f,x,1/7,1/6),
explicit(f,x,1/8,1/7),explicit(f,x,1/9,1/8),
explicit(f,x,1/10,1/9),explicit(f,x,1/11,1/10),
explicit(f,x,1/12,1/11),explicit(f,x,1/13,1/12),
explicit(f,x,1/14,1/13),explicit(f,x,1/15,1/14),
explicit(f,x,1/16,1/15),explicit(f,x,1/17,1/16),
explicit(f,x,1/18,1/17),explicit(f,x,1/19,1/18),
explicit(f,x,1/20,1/19),explicit(f,x,1/21,1/20)]
(%i9) apply (draw2d, %);
关于plot - 如何绘制高斯函数图?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49587741/
编写求解线性代数方程组的高斯-乔丹方法的任务是我选择用来推进学习 J 的一项练习。系统为 Ax=b,其中 A 是 n-by-n 矩阵,b 和未知的 x 是 n-向量。首先,我从带有控制结构的最简单形式
祝大家新年快乐! :) 我正在 Matlab 中编写 Gauss-Seidel 函数,但遇到了一些问题。 当精度达到 6 位小数时,迭代必须停止。这意味着x-xprevious的无限范数(要求使用它)
我正在尝试使用 scipy 和曲线拟合对我的数据进行高斯拟合,这是我的代码: import csv import numpy as np import matplotlib.pyplot as plt
[已解决,谢谢] 我在 C++ 中开发了下面的代码来使用高斯-塞德尔方法求解线性方程,但我似乎在填充数组时在运行时遇到了一个我无法弄清楚的问题。这是我的代码... #include int main(
我必须设计一种算法作为正向消元法的扩展,在矩阵上进行高斯约旦消元法。我的程序正在执行并创建数字的对角线,但它们并不都是 1。它也不会访问第一行和第一列以将它们更改为 0。最后一列,也就是答案所在的那一
我已经按照 Nixon Aguado 的算法实现了一个高斯滤波器。算法(找到此处描述的模板后 gaussian template )如下。 我相信伪代码是 MATLAB 风格的。 function c
在平滑图像时,我应该应用高斯和双边滤波器等哪种颜色空间版本(灰度、RGB、HSV 等)以获得最佳的去噪效果?是有一个总体趋势,还是在不同情况下会发生变化? 此外,您建议在图像处理中使用什么滤镜和色彩空
我需要根据 Java 中的正态分布对网格(MXN 矩阵)的单元格进行采样。 我知道the Apache Math library具有对一维(1D)值进行采样的函数,因此对于 vector 来说很好,但
我可以使用 random.gauss(mu, sigma) 函数生成高斯数据,但是如何生成二维高斯数据?有这样的功能吗? 最佳答案 如果你可以使用numpy,有numpy.random.multiva
为什么要使用滤波 消除图像中的噪声成分叫作图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和中频段是很常见的,而在较高频段,感兴趣的信息经常被噪声淹没。因此一个能降低高频成分幅度的
我正在执行高斯混合模型分类,并基于此,在 MATLAB 中使用“mvnpdf”函数。 据我所知,该函数返回传递给它的数据点或元素的多变量概率密度。 但是我试图在 C 上重新创建它,并且我假设 mvnp
I am using rbf,Support Vector machine for large training set=1135x9 matrix and test set{95x9}. I am
我现在多次偶然发现使用 scipy.curve_fit 在 python 中进行拟合比使用其他工具(例如根 ( https://root.cern.ch/ ) 例如,在拟合高斯分布时,使用 scipy
我想在 MATLAB 中绘制高斯波函数的二维表示。我希望 2D 图为一种颜色(绿色),远离高斯中心变得透明。 当我使用 imagesc 时(就像在下一个代码中一样),我在黑色方 block 上得到了一
如果我有数据(每日股票图表是一个很好的例子,但它可以是任何东西),其中我只知道 X 单位销售的范围(高 - 低)但我不知道确切的价格出售的任何给定元素。为简单起见,假设价格范围包含足够的桶(例如,40
这个问题在这里已经有了答案: Impulse, gaussian and salt and pepper noise with OpenCV (10 个回答) 关闭6年前。 我想知道 Python 中
我是一名优秀的程序员,十分优秀!