- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在处理大约 2500x2500x50 (lonxlatxtime) 的大型矩阵。矩阵只包含 1 和 0。我需要知道每个时间步长 24 个周围元素的总和。到目前为止,我是这样做的:
xdim <- 2500
ydim <- 2500
tdim <- 50
a <- array(0:1,dim=c(xdim,ydim,tdim))
res <- array(0:1,dim=c(xdim,ydim,tdim))
for (t in 1:tdim){
for (x in 3:(xdim-2)){
for (y in 3:(ydim-2)){
res[x,y,t] <- sum(a[(x-2):(x+2),(y-2):(y+2),t])
}
}
}
最佳答案
介绍
我不得不说,在阵列的设置背后有很多隐藏的东西。不过,剩下的问题是微不足道的。因此,有两种方法可以真正做到这一点:
OpenMP
与 Armadillo
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
// Add a flag to enable OpenMP at compile time
// [[Rcpp::plugins(openmp)]]
// Protect against compilers without OpenMP
#ifdef _OPENMP
#include <omp.h>
#endif
// [[Rcpp::export]]
arma::cube cube_parallel(arma::cube a, arma::cube res, int cores = 1) {
// Extract the different dimensions
unsigned int tdim = res.n_slices;
unsigned int xdim = res.n_rows;
unsigned int ydim = res.n_cols;
// Same calculation loop
#pragma omp parallel for num_threads(cores)
for (unsigned int t = 0; t < tdim; t++){
// pop the T
arma::mat temp_mat = a.slice(t);
// Subset the rows
for (unsigned int x = 2; x < xdim-2; x++){
arma::mat temp_row_sub = temp_mat.rows(x-2, x+2);
// Iterate over the columns with unit accumulative sum
for (unsigned int y = 2; y < ydim-2; y++){
res(x,y,t) = accu(temp_row_sub.cols(y-2,y+2));
}
}
}
return res;
}
array(0:1, dims)
正在 build 中。
xdim
是偶数,则只有矩阵的行交替。 xdim
是奇数和 ydim
是奇数,然后行交替以及矩阵交替。 xdim
是奇数和 ydim
是偶数,则只有行交替 xdim <- 2
ydim <- 3
tdim <- 2
a <- array(0:1,dim=c(xdim,ydim,tdim))
, , 1
[,1] [,2] [,3]
[1,] 0 0 0
[2,] 1 1 1
, , 2
[,1] [,2] [,3]
[1,] 0 0 0
[2,] 1 1 1
xdim <- 3
ydim <- 3
tdim <- 3
a <- array(0:1,dim=c(xdim,ydim,tdim))
, , 1
[,1] [,2] [,3]
[1,] 0 1 0
[2,] 1 0 1
[3,] 0 1 0
, , 2
[,1] [,2] [,3]
[1,] 1 0 1
[2,] 0 1 0
[3,] 1 0 1
, , 3
[,1] [,2] [,3]
[1,] 0 1 0
[2,] 1 0 1
[3,] 0 1 0
xdim <- 3
ydim <- 4
tdim <- 2
a <- array(0:1,dim=c(xdim,ydim,tdim))
, , 1
[,1] [,2] [,3] [,4]
[1,] 0 1 0 1
[2,] 1 0 1 0
[3,] 0 1 0 1
, , 2
[,1] [,2] [,3] [,4]
[1,] 0 1 0 1
[2,] 1 0 1 0
[3,] 0 1 0 1
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
// ------- Make Alternating Vectors
arma::vec odd_vec(unsigned int xdim){
// make a temporary vector to create alternating 0-1 effect by row.
arma::vec temp_vec(xdim);
// Alternating vector (anyone have a better solution? )
for (unsigned int i = 0; i < xdim; i++) {
temp_vec(i) = (i % 2 ? 0 : 1);
}
return temp_vec;
}
arma::vec even_vec(unsigned int xdim){
// make a temporary vector to create alternating 0-1 effect by row.
arma::vec temp_vec(xdim);
// Alternating vector (anyone have a better solution? )
for (unsigned int i = 0; i < xdim; i++) {
temp_vec(i) = (i % 2 ? 1 : 0); // changed
}
return temp_vec;
}
// --- Handle the different cases
// [[Rcpp::export]]
arma::mat make_even_matrix(unsigned int xdim, unsigned int ydim){
arma::mat temp_mat(xdim,ydim);
temp_mat.each_col() = even_vec(xdim);
return temp_mat;
}
// xdim is odd and ydim is even
// [[Rcpp::export]]
arma::mat make_odd_matrix_case1(unsigned int xdim, unsigned int ydim){
arma::mat temp_mat(xdim,ydim);
arma::vec e_vec = even_vec(xdim);
arma::vec o_vec = odd_vec(xdim);
// Alternating column
for (unsigned int i = 0; i < ydim; i++) {
temp_mat.col(i) = (i % 2 ? o_vec : e_vec);
}
return temp_mat;
}
// xdim is odd and ydim is odd
// [[Rcpp::export]]
arma::mat make_odd_matrix_case2(unsigned int xdim, unsigned int ydim){
arma::mat temp_mat(xdim,ydim);
arma::vec e_vec = even_vec(xdim);
arma::vec o_vec = odd_vec(xdim);
// Alternating column
for (unsigned int i = 0; i < ydim; i++) {
temp_mat.col(i) = (i % 2 ? e_vec : o_vec); // slight change
}
return temp_mat;
}
t
因为我们不再需要重复计算。
// --- Calculation engine
// [[Rcpp::export]]
arma::mat calc_matrix(arma::mat temp_mat){
unsigned int xdim = temp_mat.n_rows;
unsigned int ydim = temp_mat.n_cols;
arma::mat res = temp_mat;
// Subset the rows
for (unsigned int x = 2; x < xdim-2; x++){
arma::mat temp_row_sub = temp_mat.rows(x-2, x+2);
// Iterate over the columns with unit accumulative sum
for (unsigned int y = 2; y < ydim-2; y++){
res(x,y) = accu(temp_row_sub.cols(y-2,y+2));
}
}
return res;
}
// --- Main Engine
// Create the desired cube information
// [[Rcpp::export]]
arma::cube dim_to_cube(unsigned int xdim = 4, unsigned int ydim = 4, unsigned int tdim = 3) {
// Initialize values in A
arma::cube res(xdim,ydim,tdim);
if(xdim % 2 == 0){
res.each_slice() = calc_matrix(make_even_matrix(xdim, ydim));
}else{
if(ydim % 2 == 0){
res.each_slice() = calc_matrix(make_odd_matrix_case1(xdim, ydim));
}else{
arma::mat first_odd_mat = calc_matrix(make_odd_matrix_case1(xdim, ydim));
arma::mat sec_odd_mat = calc_matrix(make_odd_matrix_case2(xdim, ydim));
for(unsigned int t = 0; t < tdim; t++){
res.slice(t) = (t % 2 ? sec_odd_mat : first_odd_mat);
}
}
}
return res;
}
Unit: microseconds
expr min lq mean median uq max neval
r_1core 3538.022 3825.8105 4301.84107 3957.3765 4043.0085 16856.865 100
alex_1core 2790.515 2984.7180 3461.11021 3076.9265 3189.7890 15371.406 100
cpp_1core 174.508 180.7190 197.29728 194.1480 204.8875 338.510 100
cpp_2core 111.960 116.0040 126.34508 122.7375 136.2285 162.279 100
cpp_3core 81.619 88.4485 104.54602 94.8735 108.5515 204.979 100
cpp_cache 40.637 44.3440 55.08915 52.1030 60.2290 302.306 100
cpp_parallel = cube_parallel(a,res, 1)
alex_1core = alex(a,res,xdim,ydim,tdim)
cpp_cache = dim_to_cube(xdim,ydim,tdim)
op_answer = cube_r(a,res,xdim,ydim,tdim)
all.equal(cpp_parallel, op_answer)
all.equal(cpp_cache, op_answer)
all.equal(alex_1core, op_answer)
xdim <- 20
ydim <- 20
tdim <- 5
a <- array(0:1,dim=c(xdim,ydim,tdim))
res <- array(0:1,dim=c(xdim,ydim,tdim))
ga = microbenchmark::microbenchmark(r_1core = cube_r(a,res,xdim,ydim,tdim),
alex_1core = alex(a,res,xdim,ydim,tdim),
cpp_1core = cube_parallel(a,res, 1),
cpp_2core = cube_parallel(a,res, 2),
cpp_3core = cube_parallel(a,res, 3),
cpp_cache = dim_to_cube(xdim,ydim,tdim))
关于R:总结相邻的矩阵元素。如何加速?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37684181/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!