- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试在 UCI 银行营销数据上构建决策树和随机森林分类器 -> https://archive.ics.uci.edu/ml/datasets/bank+marketing .数据集中有许多分类特征(具有字符串值)。
在 spark ml 文档中,提到可以通过使用 StringIndexer 或 VectorIndexer 进行索引将分类变量转换为数字。我选择使用 StringIndexer(向量索引需要向量特征和向量汇编器,将特征转换为向量特征只接受数字类型)。使用这种方法,分类特征的每个级别都将根据其频率分配数值(0 表示类别特征的最频繁标签)。
我的问题是随机森林或决策树的算法如何理解新特征(源自分类特征)与连续变量不同。索引特征在算法中会被视为连续的吗?这是正确的方法吗?或者我应该继续使用 One-Hot-Encoding 来处理分类特征。
我从这个论坛上阅读了一些答案,但最后一部分我没有弄清楚。
最佳答案
应该对类别 > 2 的分类变量进行一次热编码。
要理解为什么,您应该知道分类数据的子类别之间的区别:Ordinal data
和 Nominal data
.
序数数据 :这些值在它们之间有某种排序。例子:
客户反馈(优秀、好、中立、差、非常差)。正如您所看到的,它们之间有明确的顺序(优秀 > 好 > 中性 > 差 > 非常差)。在这种情况下 StringIndexer
单独用于建模目的就足够了。
标称数据 :这些值之间没有定义的顺序。
例如:颜色(黑色,蓝色,白色,...)。在这种情况下 StringIndexer
只有不是 充足的。和 One Hot Encoding
在 String Indexing
之后需要.
后 String Indexing
让我们假设输出是:
id | colour | categoryIndex
----|----------|---------------
0 | black | 0.0
1 | white | 1.0
2 | yellow | 2.0
3 | red | 3.0
One Hot Encoding
,机器学习算法将假设:
red > yellow > white > black
,我们知道这不是真的。
OneHotEncoder()
将帮助我们避免这种情况。
Will indexed feature be considered as continuous in the algorithm?
Is it the right approach? Or should I go ahead with One-Hot-Encoding for categorical features
OneHot Encoding
,大多数 ML 算法都需要它。
关于apache-spark-mllib - 如何在 spark ml 中处理决策树、随机森林的分类特征?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44959122/
使用 Spark1.6.0 MLLib,我将构建一个模型(如 RandomForest)并保存到 hdfs,然后可以从 hdfs 加载随机森林模型以在没有 SparkContext 的情况下进行预测。
我在某处读到 MLlib 本地向量/矩阵目前正在包装 Breeze 实现,但是将 MLlib 转换为 Breeze 向量/矩阵的方法是 org.apache.spark.mllib 范围内的私有(pr
我正在尝试在 Web 项目中使用 spark mllib.jar。我下载了 spark-1.1.0-bin-hadoop2.4 并解压。找到如下jar: datanucleus-api-jdi-3.2
在尝试使用 Python 使用 Spark mllib 的 LinearRegressionWithSGD 进行线性回归时,我一直得到非常糟糕的结果。 我调查了类似的问题,如下所示: Spark -
我使用 mllib 创建了 Apache Spark 机器学习管道。评估器结果是一个带有“概率”列的 DataFrame,它是概率的 mllib 向量(类似于 scikit-learn 中的 pred
我正在尝试使用 Spark 的 MLlib 在 Java 上实现 KMeans,我偶然发现了一个问题,那就是,尽管我导入了正确的 jar,但我的编译器无法识别这一行 // Cluster the da
我正在使用 Scala 对其进行编程,但语言在这里并不重要。 在这种情况下,隐式反馈协作过滤器 (ALS.trainImplicit) 的输入是产品的 View : Rating("user1", "
假设我有一个Array[RDD]类型的对象data。我想学习此对象中每个 RDD 上的独立机器学习模型。例如,对于随机森林: data.map{ d => RandomForest.trainRegr
我想运行 SVM 回归,但输入格式有问题。现在,我为一位客户设置的训练和测试集如下所示: 1 '12262064 |f offer_quantity:1 has_bought_brand_compan
我在 Spark 控制台中尝试了以下代码 import org.apache.spark.mllib.linalg.{Matrix, Matrices, DenseMatrix} val dm: De
Spark 2.0.0 中是否有任何预构建的异常值检测算法/四分位距识别方法?我在这里找到了一些代码,但我认为这在spark2.0.0中尚不可用 谢谢 最佳答案 如果您没有找到预构建的方法,您可以执行
我正在使用 pySpark MLlib 和开箱即用的 ALS 方法进行协同过滤。只是想知道,Spark 是否提供了其他一些进行过滤(用于计算距离)的方法,例如 Pearson 或 Cosine 的?可
您好,我是 spark mllib 的新手。我已经有一个 r 模型。我正在尝试使用 spark mllib 的相同模型。这里是 R 模型代码。 R 代码。 delhi data = sc.textF
我正在学习如何将机器学习与 Spark MLLib 结合使用,目的是对推文进行情感分析。我从这里得到了一个情绪分析数据集: http://thinknook.com/wp-content/upload
我有一个具有这种结构的小文件“naivebayetest.txt” 10 1:1 20 1:2 20 1:2 根据这些数据,我试图对 vector (1) 进行分类。如果我正确理解贝叶斯 (1) 的标
“spark mllib”提供的机器学习算法,如 naive byes、random forest 能否在 spark 集群中以并行模式运行?或者我们需要更改代码?请提供一个并行运行的例子?不确定 M
我正在使用 Spark 1.5.0 MLlib 随机森林算法(Scala 代码)进行二分类。由于我使用的数据集高度不平衡,因此多数类以 10% 的采样率进行下采样。 是否可以在 Spark 随机森林训
我正在使用 Spark MLlib 1.4.1 创建决策树模型。现在我想从决策树中提取规则。 如何提取规则? 最佳答案 您可以通过调用 model.toDebugString() 以字符串形式获取完整
我正在尝试使用 MlLib 进行协作过滤。 我在 Apache Spark 1.0.0 中运行 Scala 程序时遇到以下错误。 14/07/15 16:16:31 WARN NativeCod
我正在尝试在 Spark 中实现的协作过滤算法,并遇到以下问题: 假设我用以下数据训练模型: u1|p1|3 u1|p2|3 u2|p1|2 u2|p2|3 现在,如果我用以下数据测试它: u1|p1
我是一名优秀的程序员,十分优秀!