- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我一直在尝试运行下面从 here 得到的代码,尽管我几乎没有改变图像大小(350,350 而不是 150, 150),但仍然无法让它工作。我收到上述过滤器错误(在标题中),我确实理解但我没有做错,所以我不明白这一点。它基本上说我的节点不能多于输入,对吗?
我最终能够通过更改以下行来破解我的解决方案:
model.add(Convolution2D(32, 5, 5, border_mode='valid', input_shape=(3, IMG_WIDTH, IMG_HEIGHT)))
model.add(Convolution2D(32, 5, 5, border_mode='valid', input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)))
# IMPORT LIBRARIES --------------------------------------------------------------------------------#
import glob
import tensorflow
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from settings import RAW_DATA_ROOT
# GLOBAL VARIABLES --------------------------------------------------------------------------------#
TRAIN_PATH = RAW_DATA_ROOT + "/train/"
TEST_PATH = RAW_DATA_ROOT + "/test/"
IMG_WIDTH, IMG_HEIGHT = 350, 350
NB_TRAIN_SAMPLES = len(glob.glob(TRAIN_PATH + "*"))
NB_VALIDATION_SAMPLES = len(glob.glob(TEST_PATH + "*"))
NB_EPOCH = 50
# FUNCTIONS ---------------------------------------------------------------------------------------#
def baseline_model():
"""
The Keras library provides wrapper classes to allow you to use neural network models developed
with Keras in scikit-learn. The code snippet below is used to construct a simple stack of 3
convolution layers with a ReLU activation and followed by max-pooling layers. This is very
similar to the architectures that Yann LeCun advocated in the 1990s for image classification
(with the exception of ReLU).
:return: The training model.
"""
model = Sequential()
model.add(Convolution2D(32, 5, 5, border_mode='valid', input_shape=(3, IMG_WIDTH, IMG_HEIGHT)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(32, 5, 5, border_mode='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(64, 5, 5, border_mode='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# Add a fully connected layer layer that converts our 3D feature maps to 1D feature vectors
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
# Use a dropout layer to reduce over-fitting, by preventing a layer from seeing twice the exact
# same pattern (works by switching off a node once in a while in different epochs...). This
# will also serve as out output layer.
model.add(Dropout(0.5))
model.add(Dense(8))
model.add(Activation('softmax'))
# Compile model
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
return model
def train_model(model):
"""
Simple script that uses the baseline model and returns a trained model.
:param model: model
:return: model
"""
# Define the augmentation configuration we will use for training
TRAIN_DATAGEN = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# Build the train generator
TRAIN_GENERATOR = TRAIN_DATAGEN.flow_from_directory(
TRAIN_PATH,
target_size=(IMG_WIDTH, IMG_HEIGHT),
batch_size=32,
class_mode='categorical')
TEST_DATAGEN = ImageDataGenerator(rescale=1. / 255)
# Build the validation generator
TEST_GENERATOR = TEST_DATAGEN.flow_from_directory(
TEST_PATH,
target_size=(IMG_WIDTH, IMG_HEIGHT),
batch_size=32,
class_mode='categorical')
# Train model
model.fit_generator(
TRAIN_GENERATOR,
samples_per_epoch=NB_TRAIN_SAMPLES,
nb_epoch=NB_EPOCH,
validation_data=TEST_GENERATOR,
nb_val_samples=NB_VALIDATION_SAMPLES)
# Always save your weights after training or during training
model.save_weights('first_try.h5')
# END OF FILE -------------------------------------------------------------------------------------#
Using TensorFlow backend.
Training set: 0 files.
Test set: 0 files.
Traceback (most recent call last):
File "/Users/christoshadjinikolis/GitHub_repos/datareplyuk/ODSC_Facial_Sentiment_Analysis/src/model/__init__.py", line 79, in <module>
model = baseline_model()
File "/Users/christoshadjinikolis/GitHub_repos/datareplyuk/ODSC_Facial_Sentiment_Analysis/src/model/training_module.py", line 31, in baseline_model
model.add(Convolution2D(32, 5, 5, border_mode='valid', input_shape=(3, IMG_WIDTH, IMG_HEIGHT)))
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/keras/models.py", line 276, in add
layer.create_input_layer(batch_input_shape, input_dtype)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/keras/engine/topology.py", line 370, in create_input_layer
self(x)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/keras/engine/topology.py", line 514, in __call__
self.add_inbound_node(inbound_layers, node_indices, tensor_indices)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/keras/engine/topology.py", line 572, in add_inbound_node
Node.create_node(self, inbound_layers, node_indices, tensor_indices)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/keras/engine/topology.py", line 149, in create_node
output_tensors = to_list(outbound_layer.call(input_tensors[0], mask=input_masks[0]))
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/keras/layers/convolutional.py", line 466, in call
filter_shape=self.W_shape)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/keras/backend/tensorflow_backend.py", line 1579, in conv2d
x = tf.nn.conv2d(x, kernel, strides, padding=padding)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/tensorflow/python/ops/gen_nn_ops.py", line 394, in conv2d
data_format=data_format, name=name)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 703, in apply_op
op_def=op_def)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2319, in create_op
set_shapes_for_outputs(ret)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1711, in set_shapes_for_outputs
shapes = shape_func(op)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/common_shapes.py", line 246, in conv2d_shape
padding)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/common_shapes.py", line 184, in get2d_conv_output_size
(row_stride, col_stride), padding_type)
File "/Users/christoshadjinikolis/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/common_shapes.py", line 149, in get_conv_output_size
"Filter: %r Input: %r" % (filter_size, input_size))
ValueError: Filter must not be larger than the input: Filter: (5, 5) Input: (3, 350)
最佳答案
问题是 input_shape() 的顺序取决于您使用的后端(tensorflow 或 theano)。
我发现的最佳解决方案是在文件 ~/.keras/keras.json
中定义此顺序。Try to use the theano order with tensorflow backend, or theano order with theano backend.
在你的家中创建keras目录并创建keras json:mkdir ~/.keras && touch ~/.keras/keras.json
{
"image_dim_ordering": "th",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
关于python-2.7 - Tensorflow + Keras + Convolution2d : ValueError: Filter must not be larger than the input: Filter: (5, 5) 输入 : (3, 350),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39848466/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!