- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
背景:
我有 2 个服务器,所有操作系统内核版本都是 4.18.7,其中 CONFIG_BPF_SYSCALL=y
我创建了一个 shell 脚本“x.sh”
i=0
while (( i < 1000000 ))
do (( i ++ ))
done
perf stat ./x.sh
5391.653531 task-clock (msec) # 1.000 CPUs utilized
4 context-switches # 0.001 K/sec
0 cpu-migrations # 0.000 K/sec
107 page-faults # 0.020 K/sec
12,910,036,202 cycles # 2.394 GHz
27,055,073,385 instructions # 2.10 insn per cycle
6,527,267,657 branches # 1210.624 M/sec
34,787,686 branch-misses # 0.53% of all branches
5.392121575 seconds time elapsed
10688.669439 task-clock (msec) # 1.000 CPUs utilized
6 context-switches # 0.001 K/sec
0 cpu-migrations # 0.000 K/sec
105 page-faults # 0.010 K/sec
24,583,857,467 cycles # 2.300 GHz
27,117,299,405 instructions # 1.10 insn per cycle
6,571,204,123 branches # 614.782 M/sec
32,996,513 branch-misses # 0.50% of all branches
10.688907278 seconds time elapsed
i=0
while (( i < 10000 ))
do
(( i ++))
done
perf stat -d -d -d -r 100 ~/1.sh
54.007015 task-clock (msec) # 0.993 CPUs utilized ( +- 0.09% )
0 context-switches # 0.002 K/sec ( +- 29.68% )
0 cpu-migrations # 0.000 K/sec ( +-100.00% )
106 page-faults # 0.002 M/sec ( +- 0.12% )
128,380,832 cycles # 2.377 GHz ( +- 0.09% ) (30.52%)
252,497,672 instructions # 1.97 insn per cycle ( +- 0.01% ) (39.75%)
60,741,861 branches # 1124.703 M/sec ( +- 0.01% ) (40.63%)
451,011 branch-misses # 0.74% of all branches ( +- 0.29% ) (40.72%)
66,621,188 L1-dcache-loads # 1233.565 M/sec ( +- 0.01% ) (40.76%)
52,248 L1-dcache-load-misses # 0.08% of all L1-dcache hits ( +- 4.55% ) (39.86%)
1,568 LLC-loads # 0.029 M/sec ( +- 9.58% ) (29.75%)
168 LLC-load-misses # 21.47% of all LL-cache hits ( +- 3.87% ) (29.66%)
<not supported> L1-icache-loads
672,212 L1-icache-load-misses ( +- 0.85% ) (29.62%)
67,630,589 dTLB-loads # 1252.256 M/sec ( +- 0.01% ) (29.62%)
1,051 dTLB-load-misses # 0.00% of all dTLB cache hits ( +- 33.11% ) (29.62%)
13,929 iTLB-loads # 0.258 M/sec ( +- 17.85% ) (29.62%)
44,327 iTLB-load-misses # 318.24% of all iTLB cache hits ( +- 8.12% ) (29.62%)
<not supported> L1-dcache-prefetches
<not supported> L1-dcache-prefetch-misses
0.054370018 seconds time elapsed ( +- 0.08% )
106.405511 task-clock (msec) # 0.996 CPUs utilized ( +- 0.07% )
0 context-switches # 0.002 K/sec ( +- 18.92% )
0 cpu-migrations # 0.000 K/sec
106 page-faults # 0.994 K/sec ( +- 0.09% )
242,242,714 cycles # 2.277 GHz ( +- 0.07% ) (30.55%)
260,394,910 instructions # 1.07 insn per cycle ( +- 0.01% ) (39.00%)
62,877,430 branches # 590.923 M/sec ( +- 0.01% ) (39.65%)
407,887 branch-misses # 0.65% of all branches ( +- 0.25% ) (39.81%)
68,137,265 L1-dcache-loads # 640.355 M/sec ( +- 0.01% ) (39.84%)
70,330 L1-dcache-load-misses # 0.10% of all L1-dcache hits ( +- 2.91% ) (39.38%)
3,526 LLC-loads # 0.033 M/sec ( +- 7.33% ) (30.28%)
153 LLC-load-misses # 8.69% of all LL-cache hits ( +- 6.29% ) (30.12%)
<not supported> L1-icache-loads
878,021 L1-icache-load-misses ( +- 0.43% ) (30.09%)
68,442,021 dTLB-loads # 643.219 M/sec ( +- 0.01% ) (30.07%)
9,518 dTLB-load-misses # 0.01% of all dTLB cache hits ( +- 2.58% ) (30.07%)
233,190 iTLB-loads # 2.192 M/sec ( +- 3.73% ) (30.07%)
17,837 iTLB-load-misses # 7.65% of all iTLB cache hits ( +- 13.21% ) (30.07%)
<not supported> L1-dcache-prefetches
<not supported> L1-dcache-prefetch-misses
0.106858870 seconds time elapsed ( +- 0.07% )
#! /usr/bin/sh
,结果像以前一样
perf diff perf.data.s2 perf.data.s1
/usr/lib64/ld-2.17.so with build id 93d2e4a501823d041413eeb652b89044d1f680ee not found, continuing without symbols
/usr/lib64/libc-2.17.so with build id b04a54c443d36058702ab4060c63f4ab3273eae9 not found, continuing without symbols
# Event 'cycles'
#
# Baseline Delta Shared Object Symbol
# ........ ....... ................. ..............................................
#
21.20% +3.83% bash [.] 0x000000000002c0f0
10.22% libc-2.17.so [.] _int_free
9.11% libc-2.17.so [.] _int_malloc
7.97% libc-2.17.so [.] malloc
4.09% libc-2.17.so [.] __gconv_transform_utf8_internal
3.71% libc-2.17.so [.] __mbrtowc
3.48% -1.63% bash [.] execute_command_internal
3.48% +1.18% [unknown] [k] 0xfffffe0000032000
3.25% -1.87% bash [.] xmalloc
3.12% libc-2.17.so [.] __strcpy_sse2_unaligned
2.44% +2.22% [kernel.kallsyms] [k] syscall_return_via_sysret
2.09% -0.24% bash [.] evalexp
2.09% libc-2.17.so [.] __ctype_get_mb_cur_max
1.92% libc-2.17.so [.] free
1.41% -0.95% bash [.] dequote_string
1.19% +0.23% bash [.] stupidly_hack_special_variables
1.16% libc-2.17.so [.] __strlen_sse2_pminub
1.16% libc-2.17.so [.] __memcpy_ssse3_back
1.16% libc-2.17.so [.] __strcmp_sse42
0.93% -0.01% bash [.] mbschr
0.93% -0.47% bash [.] hash_search
0.70% libc-2.17.so [.] __sigprocmask
0.70% -0.23% bash [.] dispose_words
0.70% -0.23% bash [.] execute_command
0.70% -0.23% bash [.] set_pipestatus_array
0.70% bash [.] run_pending_traps
0.47% bash [.] malloc@plt
0.47% bash [.] var_lookup
0.47% bash [.] fmtumax
0.47% bash [.] do_redirections
0.46% bash [.] dispose_word
0.46% -0.00% bash [.] alloc_word_desc
0.46% -0.00% [kernel.kallsyms] [k] _copy_to_user
0.46% libc-2.17.so [.] __ctype_b_loc
0.46% bash [.] new_fd_bitmap
0.46% bash [.] add_unwind_protect
0.46% -0.00% bash [.] discard_unwind_frame
0.46% bash [.] memcpy@plt
0.46% bash [.] __ctype_get_mb_cur_max@plt
0.46% bash [.] signal_in_progress
0.40% libc-2.17.so [.] _IO_vfscanf
0.40% ld-2.17.so [.] do_lookup_x
0.27% bash [.] mbrtowc@plt
0.24% +1.60% [kernel.kallsyms] [k] __x64_sys_rt_sigprocmask
0.23% bash [.] list_append
0.23% bash [.] bind_variable
0.23% +0.69% [kernel.kallsyms] [k] entry_SYSCALL_64_stage2
0.23% +0.69% [kernel.kallsyms] [k] do_syscall_64
0.23% libc-2.17.so [.] _dl_mcount_wrapper_check
0.23% +0.69% bash [.] make_word_list
0.23% +0.69% [kernel.kallsyms] [k] copy_user_generic_unrolled
0.23% [kernel.kallsyms] [k] unmap_page_range
0.23% libc-2.17.so [.] __sigjmp_save
0.23% +0.23% [kernel.kallsyms] [k] entry_SYSCALL_64_after_hwframe
0.20% [kernel.kallsyms] [k] swapgs_restore_regs_and_return_to_usermode
0.03% [kernel.kallsyms] [k] page_fault
0.00% [kernel.kallsyms] [k] xfs_bmapi_read
0.00% [kernel.kallsyms] [k] xfs_release
0.00% +0.00% [kernel.kallsyms] [k] native_write_msr
+45.33% libc-2.17.so [.] 0x0000000000027cc6
+0.52% [kernel.kallsyms] [k] __mod_node_page_state
+0.46% bash [.] free@plt
+0.46% [kernel.kallsyms] [k] copy_user_enhanced_fast_string
+0.46% bash [.] begin_unwind_frame
+0.46% bash [.] make_bare_word
+0.46% bash [.] find_variable_internal
+0.37% ld-2.17.so [.] 0x0000000000009b13
cpupower idle-info -o
,请参阅 cpu 使用已在“最大性能模式”中禁用的“C 状态”。必须是
禁用 加上“最大性能模式”,性能会更好。
最佳答案
我找到了答案。
首先我们来看看内核4.18.7中BIOS的MONITOR/MWAIT选项。
在那个内核中,它将使用 intel_idle 驱动程序,该驱动程序只检查系统是否支持mwait 指令,而不会关心是否启用了C 状态。
一旦使用 MONITOR/MWAIT 指令,就会使用 intel_idle 驱动程序,并强制使用 C 状态,就像使用省电模式一样。
二、为什么每个周期的insn不一样?
因为,使用了服务 调整 ,并且事件配置文件是“延迟性能”,其中 force_latency 是 1us。
如果使用 C-state,将使用延迟小于 force_latency 的 C-state 级别;
# cpupower idle-info
CPUidle driver: intel_idle
CPUidle governor: menu
analyzing CPU 0:
Number of idle states: 5
Available idle states: POLL C1 C1E C3 C6
POLL:
Flags/Description: CPUIDLE CORE POLL IDLE
Latency: 0
Usage: 13034605
Duration: 820867557
C1:
Flags/Description: MWAIT 0x00
Latency: 2
Usage: 349471619
Duration: 344311623672
C1E:
Flags/Description: MWAIT 0x01
Latency: 10
Usage: 237
Duration: 55999
C3:
Flags/Description: MWAIT 0x10
Latency: 40
Usage: 350
Duration: 168988
C6:
Flags/Description: MWAIT 0x20
Latency: 133
Usage: 3696
Duration: 17809893
echo 2^1234567%2 | bc
非常漂亮!
关于linux-kernel - 为什么 cpu "insn per cycle"在类似的 cpu 中不同, "MONITOR-MWAIT"在 Linux 中如何工作?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54231298/
我想知道在谈到 CPU 使用率和 CPU 利用率时,术语是否存在科学差异。我觉得这两个词都被用作同义词。它们都描述了 CPU 时间和 CPU 容量之间的关系。 Wikipedia称之为 CPU 使用率
我研究了一些关于处理器和 Tomasulo 算法的指令重新排序的内容。 为了更深入地了解这个主题,我想知道是否有任何方法可以(获取跟踪)查看为给定程序完成的实际动态重新排序? 我想给出一个输入程序并查
我有一台配备 2 个 Intel Xeon CPU E5-2620 (Sandy Bridge) 和 10Gbps 82599 NIC(2 个端口)的服务器,用于高性能计算。从 PCI 关联性中,我看
您能详细解释一下“用户 CPU 时间”和“系统 CPU 时间”吗?我读了很多,但我不太理解。 最佳答案 区别在于时间花在用户空间还是内核空间。用户 CPU 时间是处理器运行程序代码(或库中的代码)所花
我想知道如何识别 CPU 是否与 ARM v5 指令集兼容。 假设 ARM v7 指令与 ARM v5 兼容是否正确? 最佳答案 您可以阅读 CPUID base register获得PARTNO。然
我目前在具有多个六核 CPU 的服务器上使用 C 多线程。我想将我的一些线程的亲和性设置为单个 CPU 的各个核心。我使用过 pthread_setaffinity_np() 和 sched_seta
1) 独占时间是在方法中花费的时间2) 包含时间是在方法中花费的时间加上在任何被调用函数中花费的时间3)我们称调用方法为“ parent ”,称方法为“子”。引用链接:Click here 这里的问题
关闭。这个问题需要多问focused 。目前不接受答案。 想要改进此问题吗?更新问题,使其仅关注一个问题 editing this post . 已关闭 5 年前。 Improve this ques
好的,所以编译器可以出于性能原因自由地重新排序代码片段。让我们假设一些代码片段,在没有应用优化的情况下直接翻译成机器代码,看起来像这样: machine_instruction_1 machine_i
我在 zabbix 中有以下默认图表,但我不知道如何解释这些值。谁能解释一下? 最佳答案 操作系统是一件非常忙碌的事情,尤其是当你让它做某事时(即使你没有做)。当我们看到一个活跃的企业环境时,总会发生
换句话说,L1、L2、L3 等缓存是否总是反射(reflect) CPU的字节序 ? 或者总是将数据存储在某些 的缓存中更有意义吗?特定字节序 ? 有没有总体设计决策 ? 最佳答案 大多数现代缓存不会
我想知道当前的 cpus 是否避免在其中至少一个为零时将两个数字相乘。谢谢 最佳答案 这取决于 CPU 和(在某些情况下)操作数的类型。 较旧/较简单的 CPU 通常使用如下乘法算法: integer
我有一个 CUDA 应用程序,它在一台计算机(配备 GTX 275)上运行良好,而在另一台配备 GeForce 8400 的计算机上运行速度慢了大约 100 倍。我怀疑有某种回退使代码实际上在 CPU
例如,对于 8 位 CPU,堆栈大小预计为 8 位宽,16 位 CPU 与 16 位堆栈宽度,以及 32 位、64 位 CPU,等等。是否适用于所有架构? 最佳答案 CPU 具有数据总线和地址总线。它
实现 SIMD 是否需要多核 CPU? 在阅读有关 SIMD 的维基百科时,我发现了以下短语“多处理元素”。那么这句话和“多核CPU”有什么区别呢? 最佳答案 不,每个内核通常都可以执行指令集中的大多
我遗漏了一些基本的东西。 CPU 流水线:在基本层面上,为什么指令需要不同数量的时钟周期才能完成,为什么有些指令在多级 CPU 中只需要 1 个周期? 除了明显的“不同的指令需要不同的工作量才能完成”
超线程 CPU 是实现并行还是仅实现并发(上下文切换)? 我的猜测是没有并行性,只有通过上下文切换的并发性。 最佳答案 单个物理 CPU 具有超线程的核心显示为 两个逻辑 CPU 到操作系统。 CPU
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 这个问题似乎不是关于 a specific programming problem, a softwar
背景是这样的:下周我们的办公室将有一天因为维护而没有暖气。预计室外温度在 7 至 12 摄氏度之间,因此可能会变冷。可移植电取暖器数量太少,无法满足所有人的需求。 但是,在我大约 6-8 平方米的办公
我开发了一个应用程序,该应用程序在我的开发箱上的三个容器中运行,该开发箱具有带超线程的四核,这意味着系统和 docker 使用 8 个核心。 容器的 CPU 分配由 docker-compose 完成
我是一名优秀的程序员,十分优秀!