- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
今天我试图在 Tensorflow 中实现一个对象检测 API。完成训练过程后,我试图运行程序来检测网络摄像头中的对象。当我运行它时,终端中打印了以下消息:
Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.05GiB with freed_by_count=0. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory were available
最佳答案
在目标检测中,使用的大部分层将是 CNN,下面将解释 CNN 的内存消耗计算。您可以对模型的其他层采用相同的方法。
For example, consider a convolutional layer with 5 × 5 filters, outputting 200 feature maps of size 150 × 100, with stride 1 and SAME padding. If the input is a 150 × 100 RGB image (three channels), then the number of parameters is (5 × 5 × 3 + 1) × 200 = 15,200 (the +1 corresponds to the bias terms), which is fairly small compared to a fully connected layer.7 However, each of the 200 feature maps contains 150 × 100 neurons, and each of these neurons needs to compute a weighted sum of its 5 × 5 × 3 = 75 inputs: that’s a total of 225 million float multiplications. Not as bad as a fully con‐nected layer, but still quite computationally intensive. Moreover, if the feature maps are represented using 32-bit floats, then the convolutional layer’s output will occupy 200 × 150 × 100 × 32 = 96 million bits (about 11.4 MB) of RAM.8 And that’s just for one instance! If a training batch contains 100 instances, then this layer will use up over 1 GB of RAM!
Consider a CNN composed of three convolutional layers, each with 3 × 3 kernels, a stride of 2, and SAME padding. The lowest layer outputs 100 feature maps, the middle one outputs 200, and the top one outputs 400. The input images are RGB images of 200 × 300 pixels. What is the total number of parameters in the CNN? If we are using 32-bit floats, at least how much RAM will this network require when making a prediction for a single instance? What about when training on a mini-batch of 50 images?
Let’s compute how many parameters the CNN has. Since its first convolutional layer has 3 × 3 kernels, and the input has three channels (red, green, and blue), then each feature map has 3 × 3 × 3 weights, plus a bias term. That’s 28 parame‐ ters per feature map. Since this first convolutional layer has 100 feature maps, it has a total of 2,800 parameters. The second convolutional layer has 3 × 3 kernels, and its input is the set of 100 feature maps of the previous layer, so each feature map has 3 × 3 × 100 = 900 weights, plus a bias term. Since it has 200 feature maps, this layer has 901 × 200 = 180,200 parameters. Finally, the third and last convolutional layer also has 3 × 3 kernels, and its input is the set of 200 feature maps of the previous layers, so each feature map has 3 × 3 × 200 = 1,800 weights, plus a bias term. Since it has 400 feature maps, this layer has a total of 1,801 × 400 = 720,400 parameters. All in all, the CNN has 2,800 + 180,200 + 720,400 = 903,400 parameters. Now let’s compute how much RAM this neural network will require (at least) when making a prediction for a single instance. First let’s compute the feature map size for each layer. Since we are using a stride of 2 and SAME padding, the horizontal and vertical size of the feature maps are divided by 2 at each layer (rounding up if necessary), so as the input channels are 200 × 300 pixels, the first layer’s feature maps are 100 × 150, the second layer’s feature maps are 50 × 75, and the third layer’s feature maps are 25 × 38. Since 32 bits is 4 bytes and the first convolutional layer has 100 feature maps, this first layer takes up 4 x 100 × 150 × 100 = 6 million bytes (about 5.7 MB, considering that 1 MB = 1,024 KB and 1 KB = 1,024 bytes). The second layer takes up 4 × 50 × 75 × 200 = 3 million bytes (about 2.9 MB). Finally, the third layer takes up 4 × 25 × 38 × 400 = 1,520,000 bytes (about 1.4 MB). However, once a layer has been computed, the memory occupied by the previous layer can be released, so if everything is well optimized, only 6 + 9 = 15 million bytes (about 14.3 MB) of RAM will be required (when the second layer has just been computed, but the memory occupied by the first layer is not released yet). But wait, you also need to add the memory occupied by the CNN’s parameters. We computed earlier that it has 903,400 parameters, each using up 4 bytes, so this adds 3,613,600 bytes (about 3.4 MB). The total RAM required is (at least) 18,613,600 bytes (about 17.8 MB).
关于python - 我们如何近似计算运行一个程序需要多少内存?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59282135/
我正在尝试用 C 语言编写一个使用 gstreamer 的 GTK+ 应用程序。 GTK+ 需要 gtk_main() 来执行。 gstreamer 需要 g_main_loop_run() 来执行。
我已经使用 apt-get 安装了 opencv。我得到了以下版本的opencv2,它工作正常: rover@rover_pi:/usr/lib/arm-linux-gnueabihf $ pytho
我有一个看起来像这样的 View 层次结构(基于其他答案和 Apple 的使用 UIScrollView 的高级 AutoLayout 指南): ScrollView 所需的2 个步骤是: 为 Scr
我尝试安装 udev。 udev 在 ./configure 期间给我一个错误 --exists: command not found configure: error: pkg-config and
我正在使用 SQLite 3。我有一个表,forums,有 150 行,还有一个表,posts,有大约 440 万行。每个帖子都属于一个论坛。 我想从每个论坛中选择最新帖子的时间戳。如果我使用 SEL
使用 go 和以下包: github.com/julienschmidt/httprouter github.com/shwoodard/jsonapi gopkg.in/mgo.v2/bson
The database仅包含 2 个表: 钱包(100 万行) 事务(1500 万行) CockroachDB 19.2.6 在 3 台 Ubuntu 机器上运行 每个 2vCPU 每个 8GB R
我很难理解为什么在下面的代码中直接调用 std::swap() 会导致编译错误,而使用 std::iter_swap 编译却没有任何错误. 来自 iter_swap() versus swap() -
我有一个非常简单的 SELECT *用 WHERE NOT EXISTS 查询条款。 SELECT * FROM "BMAN_TP3"."TT_SPLDR_55E63A28_59358" SELECT
我试图按部分组织我的 .css 文件,我需要从任何文件访问文件组中的任何类。在 Less 中,我可以毫无问题地创建一个包含所有文件导入的主文件,并且每个文件都导入主文件,但在 Sass 中,我收到一个
Microsoft.AspNet.SignalR.Redis 和 StackExchange.Redis.Extensions.Core 在同一个项目中使用。前者需要StackExchange.Red
这个问题在这里已经有了答案: Updating from Rails 4.0 to 4.1 gives sass-rails railties version conflicts (4 个答案) 关
我们有一些使用 Azure DevOps 发布管道部署到的现场服务器。我们已经使用这些发布管道几个月了,没有出现任何问题。今天,我们在下载该项目的工件时开始出现身份验证错误。 部署组中的节点显示在线,
Tip: instead of creating indexes here, run queries in your code – if you're missing any indexes, you
你能解释一下 Elm 下一个声明中的意思吗? (=>) = (,) 我在 Elm architecture tutorial 的例子中找到了它 最佳答案 这是中缀符号。实际上,这定义了一个函数 (=>
我需要一个 .NET 程序集查看器,它可以显示低级详细信息,例如元数据表内容等。 最佳答案 ildasm 是 IL 反汇编程序,具有低级托管元数据 token 信息。安装 Visual Studio
我有两个列表要在 Excel 中进行比较。这是一个很长的列表,我需要一个 excel 函数或 vba 代码来执行此操作。我已经没有想法了,因此转向你: **Old List** A
Closed. This question does not meet Stack Overflow guidelines。它当前不接受答案。 想要改善这个问题吗?更新问题,以便将其作为on-topi
我正在学习 xml 和 xml 处理。我无法很好地理解命名空间的存在。 我了解到命名空间帮助我们在 xml 中分离相同命名的元素。我们不能通过具有相同名称的属性来区分元素吗?为什么命名空间很重要或需要
我搜索了 Azure 文档、各种社区论坛和 google,但没有找到关于需要在公司防火墙上打开哪些端口以允许 Azure 所有组件(blob、sql、compute、bus、publish)的简洁声明
我是一名优秀的程序员,十分优秀!