- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
目标
我的数据由许多点组成,这些点太多而无法表示为散点图。我想绘制一个点密度。
具体来说,我想知道是否有办法使用 ggplot2 获得与此类似的内容:
当前代码
pEPNSABobs1<-ggplot(dataE, aes(comp1,mod1obs, group=1))+
geom_smooth(aes(color="chartreuse"), se=F, linetype="longdash", size=1)+
stat_smooth(data=dataE, fill="chartreuse", color="chartreuse4", linetype="blank")+
geom_smooth(data=dataS, aes(comp1,mod1obs, group=1, color="lightpink"), se=F, linetype="longdash", size=1)+
stat_smooth(data=dataS, fill="lightpink",color="lightpink4", linetype="blank")+
scale_colour_manual(name = 'Legend',
values =c('lightpink'='lightpink4','chartreuse'='chartreuse4'), labels = c('PIM','ABB'))+
scale_size_area() +
xlab("CDD0.year") +
ylab(expression(f[CDD0.year.obs]))+
labs(title='(A)')+
theme(plot.title = element_text(hjust = 0, vjust=1),axis.title = element_text(size = rel(1.2)), title=element_text(size = rel(1.2)),axis.text=element_text(size = rel(1.2)),
legend.text=element_text(size = rel(1.2)))
DataE <- structure(list(comp1 = c(1338.2461, 1721.8119, 1878.2578, 1781.8827, 1813.2432, 1711.5277, 2033.0855, 1636.394, 1580.0748, 1834.4927, 2150.4177, 1790.7859, 1980.2718, 1610.0624, 2064.5809, 2002.82, 1652.7442, 2143.8216, 2015.1028, 2201.7947, 1610.4855, 1983.2706, 1979.9317, 2282.4141, 1763.288, 2204.3358, 1781.4969, 2114.2082, 1567.7841, 2089.6192, 1653.2401, 1709.9662, 2118.7251, 1843.5898, 1561.9472, 1839.0119, 2441.8013, 1684.3595, 1862.4287, 2043.3588, 2043.1502, 1999.5591, 1929.3686, 1897.746, 2073.494, 1345.488, 1622.3962, 1692.8681, 1847.7492, 1863.1212, 1759.8359, 2092.2891, 1671.9526, 1646.3103, 1918.8867, 2187.7568, 1833.4847, 2031.483, 1653.4428, 2118.2413, 2049.7907, 1705.1815, 2191.5739, 2054.9909, 2253.6989, 1664.6036, 2038.5609, 2021.5454, 2380.9635, 1788.6053, 2225.5046, 1834.5804, 2104.5817, 1523.2706, 2150.1426, 1722.6452, 1750.2867, 2142.4975, 1871.6772, 1562.7973, 1865.9236, 2424.8774, 1700.2864, 1850.6267, 2059.4913, 2047.4193, 2002.2637, 1941.7118, 1916.4346, 2081.8719, 1357.3087, 1645.5375, 1739.0249, 1984.4754, 2500.5373, 2126.0111, 2067.2634, 2163.0708, 2149.2563, 1939.6116, 1872.462, 2024.5612, 2158.432, 1732.0504, 2287.9286, 1640.2811, 2332.7904, 2475.8456, 2097.2091, 1942.9509, 2121.2583, 1899.7503, 2060.2692, 2459.2143, 2395.0327, 2280.1373, 2628.2383, 2118.6924, 2209.724, 2228.5074, 2008.7249, 1819.8529, 2144.0186, 2466.9707, 2479.4277, 2483.6576, 2403.0477, 2025.4349, 2150.5789, 2332.0055, 2115.4415, 1981.608, 1912.8366, 2296.8201, 1985.4613, 1875.0743, 1969.649, 2048.9522, 1900.5933, 1921.7856, 2066.8277, 1859.8671, 1698.0369, 1493.0678, 1910.5082, 2102.3289, 2048.3883, 1949.4451, 1838.7137, 2257.4143, 1958.3303, 1836.1803, 2138.1416, 2194.0097, 1919.8365, 2200.6554, 1829.6413, 2290.396, 2156.0543, 1854.5949, 2240.8976, 2060.3596, 2362.8724, 1794.141, 2183.8272, 2129.4498, 2517.4392, 1901.8863, 2440.1299, 2059.9263, 2291.6513, 1642.4418, 2281.0632, 1888.9796, 1931.7574, 2232.7776, 1953.4144, 1613.9024, 2000.765, 2485.617, 1774.7963, 1900.3834, 2192.5563, 2149.8866, 2090.371, 2076.542, 2050.3292, 2152.2821, 1482.7591, 1674.3366, 1905.3904, 1971.8098, 1596.7659, 1899.0917, 2400.7906, 2048.1242, 1968.4794, 2057.2929, 2053.9162, 1837.3839),
mod1obs = c(0.695830136555704, 1.06337206841913, 1.14861889402282, 1.02790421278896, 1.11775825622145, 1.43143032263757, 1.66436105688503, 1.79407632202943, 1.54246894155172, 1.47641083551176, 1.61115035184228, 1.68350958534902, 1.67052919588235, 1.86924870748066, 1.52139461422218, 1.7206336638354, 1.77255323580939, 1.67014367453142, 1.4828365451913, 1.30632542733184, 1.28066122419783, 1.36281355152317, 0.922105627695953, 0.485097355039981, 0.527121512464299, 0.810559323027329, 1.02715532531355, 1.14244699815587, 0.999551948498188, 0.951386076673739, 0.708742765512991, 0.591036273251615, 0.954269537513021, 1.33390119349384, 1.32340100204498, 1.48365670129187, 1.18354444471793, 1.17538278706292, 1.13658706470025, 1.09659824662134, 1.33968115088882, 0.97520848249232, 0.926838756160161, 0.916231908195398, 0.899325038616274, 1.16824595028327, 1.11899066863449, 1.11661928913426, 1.12284805168664, 1.05643303658747, 1.06710730526053, 1.22833157533542, 0.816937586646849, 1.00335563406519, 1.402274505934, 1.41743848783742, 1.14038690876476, 0.985366123273008, 0.843537703363177, 0.99753466530825, 0.956105174325841, 0.969042102699615, 1.0638789437522, 0.996797745632918, 0.941726356849215, 0.926215042532983, 1.03697021488655, 1.24561208170624, 0.903344544294698, 0.852585271143484, 1.14969403609893, 0.951461942556407, 0.969946352436395, 0.856006282102713, 1.11792476085488, 1.13412438712209, 1.15896430227978, 1.13984814117922, 1.26400232474479, 1.3157371290327, 1.10269366567886, 0.852330476973561, 1.06803837916353, 1.00555346861516, 1.07980330220743, 0.999413354748127, 0.835341074425715, 0.750343026273598, 0.750086242001393, 0.845059990359667, 1.01550610388101, 0.97183262908527, 1.02351377836664, 0.646201913922726, 0.832803589659996, 1.02112583534199, 1.05276036662667, 0.778087551043244, 1.04311980643046, 1.14374772863475, 1.26330982513545, 1.20248850820938, 1.03073057299644, 1.06049050327533, 0.834166914153454, 0.984789639654932, 1.08805486508421, 1.40007199005997, 1.33458208694833, 1.09447880143235, 1.32094094746787, 1.01033105751792, 1.15916733600421, 0.83814699368444, 0.922361964325012, 0.821150439904281, 0.757025921805821, 0.796454341025722, 0.753864630868797, 0.709679353471203, 0.947247272243527, 1.00883103860073, 0.954505648136825, 0.921522424138087, 0.845557836615405, 0.959332247443167, 0.726910705401073, 0.825894718073668, 0.849038625330317, 0.860196521211579, 0.88419468576954, 0.986401829980697, 0.844208566273473, 0.733125744746535, 0.718381697185048, 0.826648914954142, 0.787244473508777, 0.65512488225044, 0.752501264072651, 0.723469068584019, 0.743094728670719, 1.11846155736291, 1.08257557110011, 0.982979407982961, 0.885561974111481, 0.898359447667526, 0.770274340254794, 0.964105752093132, 1.419398413941, 1.06346164710011, 0.94787165982562, 1.21888848634176, 0.902929635142765, 0.924412982720593, 1.10282712434799, 0.899503164916735, 0.850644250882259, 1.01891899751745, 1.21897925575381, 1.26360292391086, 0.924187893834376, 0.930518507010402, 1.03052665863541, 1.15564902628815, 1.01660158016781, 0.904615715917612, 0.523182725557325, 0.625326640420025, 1.03256402151814, 1.19178281509474, 1.21239098183734, 1.00933857234806, 1.01170794284609, 1.02137919901009, 0.784528093252022, 0.97997559028248, 1.15073167836534, 1.09499252446889, 1.02629257850687, 0.865796462253095, 1.08500359034302, 1.14790809213261, 0.96317054146643, 1.1105434300635, 0.817447776121345, 0.888257155328381, 0.884423797252747, 0.935227482404514, 1.07740310874975, 1.02969991871418, 0.922959386699878, 0.642079018955661, 0.653388944491712, 0.597053974284795, 0.882728190259291, 0.918365607321804, 0.814327793136811, 1.00391967118938, 1.09246216046294, 1.07787732161824)),
row.names = c(2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 91L, 92L, 93L, 94L, 95L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L, 124L, 125L, 126L, 127L, 128L, 129L, 130L, 131L, 132L, 133L, 134L, 135L, 136L, 137L, 138L, 139L, 140L, 141L, 142L, 143L, 144L, 145L, 146L, 147L, 148L, 149L, 150L, 151L, 152L, 153L, 154L, 155L, 156L, 157L, 158L, 159L, 160L, 161L, 162L, 163L, 164L, 165L, 166L, 167L, 168L, 169L, 170L, 171L, 172L, 173L, 174L, 175L, 176L, 177L, 178L, 179L, 180L, 181L, 182L, 183L, 184L, 185L, 186L, 187L, 188L, 189L, 190L, 191L, 192L, 193L, 194L, 195L, 196L, 197L, 198L, 199L, 200L, 201L, 202L, 203L),
class = "data.frame")
DataS <- structure(list(comp1 = c(1800.2451, 1781.6087, 1737.2914, 1816.9749, 1643.348, 1438.5377, 1338.2461, 1721.8119, 1878.2578, 1781.8827, 1813.2432, 1711.5277, 2033.0855, 1636.394, 1580.0748, 1834.4927, 2150.4177, 1790.7859, 1980.2718, 1610.0624, 2064.5809, 2002.82, 1652.7442, 2143.8216, 2015.1028, 2201.7947, 1610.4855, 1983.2706, 1979.9317, 2282.4141, 1763.288, 2204.3358, 1781.4969, 2114.2082, 1567.7841, 2089.6192, 1653.2401, 1709.9662, 2118.7251, 1843.5898, 1561.9472, 1839.0119, 2441.8013, 1684.3595, 1862.4287, 2043.3588, 2043.1502, 1999.5591, 1929.3686, 1897.746, 2073.494, 1345.488, 1622.3962, 1692.8681, 1845.1739, 1661.4121, 1746.5679, 2225.7098, 1973.0317, 1877.0764, 1875.4714, 1996.5981, 1712.4015, 1715.2255, 2149.4741, 2303.7732, 1872.9362, 2279.4588, 1513.787, 2184.5552, 2361.3593, 2148.0699, 1978.381, 2008.029, 1955.9995, 1986.7266, 2079.5143, 1960.9757, 1809.0558, 2193.2401, 1729.3818, 1926.0217, 2157.6266, 1788.1556, 1475.6945, 1854.1782, 2090.9429, 2242.7276, 2120.1378, 1982.7239, 1860.3072, 1906.2126, 2115.5587, 1970.3582, 1809.3253, 1851.249, 2147.1908, 1774.673, 1816.4041, 1934.3119, 1901.6345, 1943.6281, 1793.2585, 1826.9192, 1727.9485, 1506.61, 1440.656, 1748.6882, 1956.9693, 1938.5561, 1850.1536, 1645.5995, 2086.7712, 1723.6074, 1805.0789, 2089.9296, 2139.9376, 1891.8347, 2158.9863, 1525.1479, 2132.2023, 2061.2398, 1707.3251, 2202.9106, 2017.0934, 2359.064, 1781.5352, 2081.9002, 2091.391, 2307.257, 1722.3419, 2200.4204, 1752.5609, 2110.2504, 1432.5841, 2121.8681, 1734.5244, 1912.6964, 2134.543, 1996.4716, 1720.3715, 1902.6841, 2402.3462, 1850.2001, 1919.6724, 2123.1945, 2177.1916, 2134.0072, 1969.5795, 1896.8108, 2132.3515, 1451.0973, 1612.5966, 1725.3021, 1581.0971, 2347.5604, 2483.6352, 2035.8553, 2426.3861, 1655.1293, 2382.9981, 2468.8676, 2256.6275, 2087.2235, 2124.0978, 2068.831, 2150.4903, 2262.8365, 2198.5672, 1968.5931, 2418.6407, 1953.0811, 2108.4554, 2361.584, 1979.866, 1741.6303, 2087.9856, 2286.7883, 2395.2738, 2270.3263, 2075.8854, 1874.2124, 2038.3772, 2245.1034, 2075.8632, 1946.548, 1955.202, 2355.13, 2011.3717, 1975.8039, 2099.3788, 2136.0128, 1909.835, 1965.8319, 1829.9619, 1630.4157, 1506.5606, 1897.0851, 2069.4124, 2024.9848),
mod1obs = c(1.13466310792768, 0.931923716274403, 1.48217365869915, 1.21838260146353, 1.79940276419435, 1.76643559356371, 2.45574670199418, 1.85759003858763, 1.52414873587958, 1.56924844587154, 1.75782289196183, 1.21854647206407, 1.67402271470746, 1.57661741696957, 1.54915950383801, 1.16767311295364, 1.51513098169545, 1.58721974127532, 1.48203349385421, 1.25150055063036, 1.55523168986921, 1.16757976105911, 1.06103912158879, 1.38682784393209, 1.26706181742404, 0.922200575100749, 1.15475122512565, 0.919460864722599, 0.622581998594566, 0.888857360932288, 0.561258461668506, 0.784221352878807, 1.05841796267749, 0.954913917366984, 0.864989456398651, 0.405901971360923, 0.437238711188011, 0.238832040897009, 0.398444779604082, 0.596968751447861, 0.780373761619182, 0.593964337126505, 0.674617006647725, 0.803014994811282, 0.914435218814932, 0.832419908437008, 0.870618364283852, 0.66205782789832, 0.668271801470194, 0.582218329504303, 0.551471500972662, 0.546862377936455, 0.782666777798501, 0.797397188682925, 0.233703554128143, 0.33078183414865, 0.477622787992685, 0.788352242940992, 0.655192745268702, 0.629025187982574, 0.606750329361944, 0.688876228035905, 0.811952779578203, 0.878151955673824, 0.666102340741867, 0.234485500963779, 0.377020837708222, 0.431015138976773, 0.599545478659815, 0.485341173599891, 0.54118137004067, 0.822700963102403, 0.680465320458669, 0.750819741408091, 0.914425077741122, 1.03163581838662, 0.750374660256944, 0.994337592683161, 1.00941746422589, 1.07118881485789, 1.2413361662074, 0.862210731330022, 0.807945428753615, 1.01206355371074, 1.1466781183792, 1.04520757430783, 0.906546865827641, 0.802138329712516, 0.927446849752543, 0.909606938810288, 0.726203964235328, 0.63174380758208, 0.827670510708034, 0.796140009519362, 0.908331184943455, 1.24437229369026, 1.01038032593664, 1.20106590210506, 1.47001915216196, 1.4216087908593, 1.19649249116061, 1.28729733432818, 1.050493946874, 0.490028901207541, 0.472897051757391, 0.474117219731324, 0.85500755809614, 1.16164758242536, 1.3257510136531, 1.28575789166575, 1.63477173725642, 2.45069111586777, 2.50502453325512, 1.70995863697504, 2.4729188484128, 2.65244156137921, 2.52288384634894, 2.91133218222026, 2.80631798084833, 2.85068631154525, 2.50623525545215, 2.39950652546403, 2.49930350794263, 2.47640980454363, 2.5743114316923, 2.27093700546959, 1.9784591153946, 1.794185941834, 1.59685624413893, 1.21577767933037, 1.1993875662254, 0.905547156548879, 0.791419465032495, 1.5777113878502, 1.46727507228871, 1.03812304747397, 1.04471285876448, 0.89791346550258, 1.00531560652384, 1.03963310517253, 1.55611837868102, 1.32499035130457, 1.32064172678175, 1.61378461617361, 1.77550053496517, 1.7444038412628, 1.88853641144745, 1.44554726136069, 1.52169806808946, 1.38482876983135, 1.50693746767208, 1.56467290333013, 1.55664813927757, 1.65044541980974, 1.50357779174674, 0.764054807030921, 0.495778285132959, 0.596411488294826, 0.693937433662632, 0.932011439769366, 1.10514738904478, 0.904927677550852, 0.969827490109055, 1.05101670841548, 1.12392075468322, 1.33509689588176, 1.20342821574007, 0.993967001310557, 1.20898145783709, 1.05447146612782, 0.744232955898758, 0.844458068128595, 0.780144262373508, 0.547168299748365, 2.83490197058459, 1.23839568773548, 1.10988758878693, 0.867733363063826, 0.73962833236251, 0.85416901457008, 0.784618799106827, 0.725934558423183, 0.834658973996715, 0.875948198454898, 0.881964176473614, 0.933974735332668, 0.870382237844421, 0.772181200080244, 0.829814527221943, 0.929018949289857, 0.892966747157662, 0.891484338497291, 0.942086202624782, 0.671953671900624, 0.788435092592626, 0.620007838797593, 0.87841213508972, 1.09789753017474, 0.917411139887858, 1.12120717286975)),
row.names = c(2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L, 124L, 125L, 126L, 127L, 128L, 129L, 130L, 131L, 132L, 133L, 134L, 135L, 136L, 137L, 138L, 139L, 140L, 141L, 142L, 143L, 144L, 145L, 146L, 147L, 148L, 149L, 150L, 151L, 152L, 153L, 154L, 155L, 156L, 158L, 159L, 160L, 161L, 162L, 163L, 164L, 165L, 166L, 167L, 168L, 169L, 170L, 171L, 172L, 173L, 174L, 175L, 176L, 177L, 178L, 179L, 180L, 181L, 182L, 183L, 184L, 185L, 186L, 187L, 188L, 189L, 190L, 191L, 192L, 193L, 194L, 195L, 196L, 197L, 198L, 199L, 200L, 201L, 202L),
class = "data.frame")
最佳答案
选项 1:密度多边形
ggplot(DataS, aes(comp1, mod1obs)) +
stat_density_2d(aes(fill = ..level..),
geom = "polygon",
bins = 10) +
scale_fill_gradientn(colors = c("#FFEDA0",
"#FEB24C",
"#F03B20"))
ggplot(DataS, aes(comp1, mod1obs)) +
geom_hex(bins = 10) +
scale_fill_gradientn(colors = c("#FFEDA0",
"#FEB24C",
"#F03B20"))
DataS <- structure(list(comp1 = c(1800.2451, 1781.6087, 1737.2914, 1816.9749, 1643.348, 1438.5377, 1338.2461, 1721.8119, 1878.2578, 1781.8827, 1813.2432, 1711.5277, 2033.0855, 1636.394, 1580.0748, 1834.4927, 2150.4177, 1790.7859, 1980.2718, 1610.0624, 2064.5809, 2002.82, 1652.7442, 2143.8216, 2015.1028, 2201.7947, 1610.4855, 1983.2706, 1979.9317, 2282.4141, 1763.288, 2204.3358, 1781.4969, 2114.2082, 1567.7841, 2089.6192, 1653.2401, 1709.9662, 2118.7251, 1843.5898, 1561.9472, 1839.0119, 2441.8013, 1684.3595, 1862.4287, 2043.3588, 2043.1502, 1999.5591, 1929.3686, 1897.746, 2073.494, 1345.488, 1622.3962, 1692.8681, 1845.1739, 1661.4121, 1746.5679, 2225.7098, 1973.0317, 1877.0764, 1875.4714, 1996.5981, 1712.4015, 1715.2255, 2149.4741, 2303.7732, 1872.9362, 2279.4588, 1513.787, 2184.5552, 2361.3593, 2148.0699, 1978.381, 2008.029, 1955.9995, 1986.7266, 2079.5143, 1960.9757, 1809.0558, 2193.2401, 1729.3818, 1926.0217, 2157.6266, 1788.1556, 1475.6945, 1854.1782, 2090.9429, 2242.7276, 2120.1378, 1982.7239, 1860.3072, 1906.2126, 2115.5587, 1970.3582, 1809.3253, 1851.249, 2147.1908, 1774.673, 1816.4041, 1934.3119, 1901.6345, 1943.6281, 1793.2585, 1826.9192, 1727.9485, 1506.61, 1440.656, 1748.6882, 1956.9693, 1938.5561, 1850.1536, 1645.5995, 2086.7712, 1723.6074, 1805.0789, 2089.9296, 2139.9376, 1891.8347, 2158.9863, 1525.1479, 2132.2023, 2061.2398, 1707.3251, 2202.9106, 2017.0934, 2359.064, 1781.5352, 2081.9002, 2091.391, 2307.257, 1722.3419, 2200.4204, 1752.5609, 2110.2504, 1432.5841, 2121.8681, 1734.5244, 1912.6964, 2134.543, 1996.4716, 1720.3715, 1902.6841, 2402.3462, 1850.2001, 1919.6724, 2123.1945, 2177.1916, 2134.0072, 1969.5795, 1896.8108, 2132.3515, 1451.0973, 1612.5966, 1725.3021, 1581.0971, 2347.5604, 2483.6352, 2035.8553, 2426.3861, 1655.1293, 2382.9981, 2468.8676, 2256.6275, 2087.2235, 2124.0978, 2068.831, 2150.4903, 2262.8365, 2198.5672, 1968.5931, 2418.6407, 1953.0811, 2108.4554, 2361.584, 1979.866, 1741.6303, 2087.9856, 2286.7883, 2395.2738, 2270.3263, 2075.8854, 1874.2124, 2038.3772, 2245.1034, 2075.8632, 1946.548, 1955.202, 2355.13, 2011.3717, 1975.8039, 2099.3788, 2136.0128, 1909.835, 1965.8319, 1829.9619, 1630.4157, 1506.5606, 1897.0851, 2069.4124, 2024.9848),
mod1obs = c(1.13466310792768, 0.931923716274403, 1.48217365869915, 1.21838260146353, 1.79940276419435, 1.76643559356371, 2.45574670199418, 1.85759003858763, 1.52414873587958, 1.56924844587154, 1.75782289196183, 1.21854647206407, 1.67402271470746, 1.57661741696957, 1.54915950383801, 1.16767311295364, 1.51513098169545, 1.58721974127532, 1.48203349385421, 1.25150055063036, 1.55523168986921, 1.16757976105911, 1.06103912158879, 1.38682784393209, 1.26706181742404, 0.922200575100749, 1.15475122512565, 0.919460864722599, 0.622581998594566, 0.888857360932288, 0.561258461668506, 0.784221352878807, 1.05841796267749, 0.954913917366984, 0.864989456398651, 0.405901971360923, 0.437238711188011, 0.238832040897009, 0.398444779604082, 0.596968751447861, 0.780373761619182, 0.593964337126505, 0.674617006647725, 0.803014994811282, 0.914435218814932, 0.832419908437008, 0.870618364283852, 0.66205782789832, 0.668271801470194, 0.582218329504303, 0.551471500972662, 0.546862377936455, 0.782666777798501, 0.797397188682925, 0.233703554128143, 0.33078183414865, 0.477622787992685, 0.788352242940992, 0.655192745268702, 0.629025187982574, 0.606750329361944, 0.688876228035905, 0.811952779578203, 0.878151955673824, 0.666102340741867, 0.234485500963779, 0.377020837708222, 0.431015138976773, 0.599545478659815, 0.485341173599891, 0.54118137004067, 0.822700963102403, 0.680465320458669, 0.750819741408091, 0.914425077741122, 1.03163581838662, 0.750374660256944, 0.994337592683161, 1.00941746422589, 1.07118881485789, 1.2413361662074, 0.862210731330022, 0.807945428753615, 1.01206355371074, 1.1466781183792, 1.04520757430783, 0.906546865827641, 0.802138329712516, 0.927446849752543, 0.909606938810288, 0.726203964235328, 0.63174380758208, 0.827670510708034, 0.796140009519362, 0.908331184943455, 1.24437229369026, 1.01038032593664, 1.20106590210506, 1.47001915216196, 1.4216087908593, 1.19649249116061, 1.28729733432818, 1.050493946874, 0.490028901207541, 0.472897051757391, 0.474117219731324, 0.85500755809614, 1.16164758242536, 1.3257510136531, 1.28575789166575, 1.63477173725642, 2.45069111586777, 2.50502453325512, 1.70995863697504, 2.4729188484128, 2.65244156137921, 2.52288384634894, 2.91133218222026, 2.80631798084833, 2.85068631154525, 2.50623525545215, 2.39950652546403, 2.49930350794263, 2.47640980454363, 2.5743114316923, 2.27093700546959, 1.9784591153946, 1.794185941834, 1.59685624413893, 1.21577767933037, 1.1993875662254, 0.905547156548879, 0.791419465032495, 1.5777113878502, 1.46727507228871, 1.03812304747397, 1.04471285876448, 0.89791346550258, 1.00531560652384, 1.03963310517253, 1.55611837868102, 1.32499035130457, 1.32064172678175, 1.61378461617361, 1.77550053496517, 1.7444038412628, 1.88853641144745, 1.44554726136069, 1.52169806808946, 1.38482876983135, 1.50693746767208, 1.56467290333013, 1.55664813927757, 1.65044541980974, 1.50357779174674, 0.764054807030921, 0.495778285132959, 0.596411488294826, 0.693937433662632, 0.932011439769366, 1.10514738904478, 0.904927677550852, 0.969827490109055, 1.05101670841548, 1.12392075468322, 1.33509689588176, 1.20342821574007, 0.993967001310557, 1.20898145783709, 1.05447146612782, 0.744232955898758, 0.844458068128595, 0.780144262373508, 0.547168299748365, 2.83490197058459, 1.23839568773548, 1.10988758878693, 0.867733363063826, 0.73962833236251, 0.85416901457008, 0.784618799106827, 0.725934558423183, 0.834658973996715, 0.875948198454898, 0.881964176473614, 0.933974735332668, 0.870382237844421, 0.772181200080244, 0.829814527221943, 0.929018949289857, 0.892966747157662, 0.891484338497291, 0.942086202624782, 0.671953671900624, 0.788435092592626, 0.620007838797593, 0.87841213508972, 1.09789753017474, 0.917411139887858, 1.12120717286975)),
row.names = c(2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L, 124L, 125L, 126L, 127L, 128L, 129L, 130L, 131L, 132L, 133L, 134L, 135L, 136L, 137L, 138L, 139L, 140L, 141L, 142L, 143L, 144L, 145L, 146L, 147L, 148L, 149L, 150L, 151L, 152L, 153L, 154L, 155L, 156L, 158L, 159L, 160L, 161L, 162L, 163L, 164L, 165L, 166L, 167L, 168L, 169L, 170L, 171L, 172L, 173L, 174L, 175L, 176L, 177L, 178L, 179L, 180L, 181L, 182L, 183L, 184L, 185L, 186L, 187L, 188L, 189L, 190L, 191L, 192L, 193L, 194L, 195L, 196L, 197L, 198L, 199L, 200L, 201L, 202L),
class = "data.frame")
关于r - ggplot2 中带有 geom_smooth 的点密度,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34321712/
前 R 用户,我曾经通过 ggplotly() 函数广泛地结合 ggplot 和 plot_ly 库来显示数据。 刚到 Python 时,我看到 ggplot 库可用,但在与 plotly 的简单组合
ggplotly 使用 ggplot 删除 geom_line 图的图例。 见例如以下: library(plotly) g % ggplotly() 关于r - ggplotly 从 gg
我有一个 ggplot我试图以非常简约的外观制作线图的问题。我已经摆脱了图例,转而使用每行右侧的文本标签。如果标签不是那么长,它可能不会那么明显,但如果网格线停在最大 x 值(在这种情况下,在 201
我想使用相同的 ggplot 代码以我的数据框中的数字为条件生成 8 个不同的数字。通常我会使用 facet_grid,但在这种情况下,我希望最终得到每个单独数字的 pdf。例如,我想要这里的每一行一
当我在 ggplot 上使用 geom_text 时,与 ggplot 的“填充”选项发生冲突。 这是问题的一个明显例子: library(ggplot2) a=ChickWeight str(a)
是否可以结合使用 ggplot ly 和拼凑而成的ggplot? 例子 这将并排显示两个图 library(ggplot2) library(plotly) library(patchwork) a
我想绘制一个图表,其中 y 轴以百分比表示: p = ggplot(test, aes(x=creation_date, y=value, color=type)) + geom_line(aes
如何去除ggsave中的白边距? 我的问题和Remove white space (i.e., margins) ggplot2 in R一模一样。然而,那里的答案对我来说并不理想。我不想对固定但未知
我有一个带有一些文本层的条形图,在 ggplot 库中一切正常,但现在我想添加一些与 ggplotly 的交互性,但它无法显示文本层 我更新了所有软件包但问题仍然存在 df = read.table(
当我尝试在 ggplot 中为我的箱线图设置自定义宽度时,它工作正常: p=ggplot(iris, aes(x = Species,y=Sepal.Length )) + geom_boxplot(
我正在尝试为 ggplot 密度创建一个图例,将一个组与所有组进行比较。使用此示例 - R: Custom Legend for Multiple Layer ggplot - 我可以使用下面的代码成
所以我试图在一个多面的 ggplot 上编辑 y 值,因为我在编织时在情节上有几个不准确之处。我对 R 和 R Markdown 很陌生,所以我不太明白为什么,例如,美国的 GDP PPP 在美元金额
我需要在 python 条形图的 x 轴 ggplot 上格式化日期。 我该怎么做? 最佳答案 使用 scale_x_date() 格式化 x 轴上的日期。 p = ggplot(aes(x='dat
我想使用 ggplotly因为它的副作用相同ggplot甚至graphics做。我的意思是当我 knitr::knit或 rmarkdown::render我期望的 Rmd 文档 print(obj)
我在下面有一个简单的应用程序,它显示了一个 ggplot。 ggplot 在控制台中生成警告(见底部图片)。我想捕获警告,并将其显示在应用程序的情节下方。 这是我的代码: library(shiny)
如果显示的基本数据集很大(下面的示例工作代码),则在 Shiny 的应用程序中向/从 ggplot 添加/删除图层可能需要一段时间。 问题是: 有没有办法缓存 ggplot(基本图)并添加/删除/修改
我正在组合 ggplot 的多个绘图,使用网格视口(viewport),这是必要的(我相信),因为我想旋转绘图,这在标准 ggplot 中是不可能的,甚至可能是 gridExtra 包。 我想在两个图
我可以使用 lattice 在 R 中绘制相对频率直方图包裹: a <- runif(100) library(lattice) histogram(a) 我想在 ggplot 中获得相同的图形.我试
我需要重新安装 R,但我现在遇到了 ggplot 的一个小问题。我确信有一个简单的解决方案,我感谢所有提示! 我经常使用堆叠面积图,通常我通过定义因子水平并以相反的顺序绘制来获得所需的堆叠和图例顺序。
新的并且坚持使用ggplot: 我有以下数据: tribe rho preference_watermass 1 Luna2 -1.000 hypolimnic 2 OP10I-A1
我是一名优秀的程序员,十分优秀!