- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个来自数据框的数据透视表:
pv=testdata.pivot(index='dose',columns='el_num',values='value').reindex(index=doseann)
el_num 1 2 3 4 5 6 7 8 9 10 11
dose
100.0 7.07460 6.37422 19.8883 18.6835 16.5359 59.8294 28.5587 14.18910 39.5265 4.33896 38.0297
11931.0 6.41105 8.27059 19.0014 18.6988 16.4000 59.1123 29.4836 13.25030 36.2842 5.89428 37.9752
25079.0 6.82894 8.11478 19.8956 18.8933 15.8732 58.6548 29.8440 13.25930 36.7238 7.37476 39.1368
49640.0 7.20882 8.17981 19.3958 18.0241 15.3036 58.6676 29.9847 12.50980 37.5594 7.81891 38.7749
71545.0 9.57559 11.55590 15.4280 15.8461 13.5970 59.9049 27.4346 8.38379 40.9102 7.78858 38.5024
84303.0 9.69782 11.00110 16.4352 14.9416 13.6581 59.9323 26.3975 9.74285 40.3733 7.85947 38.5113
101415.0 10.60720 10.36910 16.3399 16.9584 13.1570 60.1249 27.9201 11.02400 39.6205 7.64924 39.0897
150913.0 10.70750 10.07470 17.9623 16.1063 13.2890 59.9274 27.7685 11.94690 39.0937 8.43550 39.5281
169885.0 10.39460 0.00000 16.9633 14.7942 13.8830 58.9495 27.9250 12.58740 38.8587 8.10606 38.8391
200463.0 9.59026 9.26161 18.0652 15.2096 13.0975 59.1136 27.8377 11.90810 40.4693 8.51281 39.2943
24.0 9.45291 9.27879 17.9021 16.5391 13.4601 58.9314 27.3388 10.94170 39.0885 8.77127 38.4680
192.0 6.14907 6.94374 19.6765 12.5670 15.6754 56.5163 28.8796 11.78300 36.6076 6.21283 38.8232
fl=testdata.pivot(index='dose',columns='el_num',values='fail').reindex(index=doseann)
el_num 1 2 3 4 5 6 7 8 9 10 11
dose
100.0 False False False False False True False False True False True
11931.0 False False False False False True False False True False True
25079.0 False False False False False True False False True False True
49640.0 False False False False False True False False True False True
71545.0 False False False False False True False False True False True
84303.0 False False False False False True False False True False True
101415.0 False False False False False True False False True False True
150913.0 False False False False False True False False True False True
169885.0 False False False False False True False False True False True
200463.0 False False False False False True False False True False True
24.0 False False False False False True False False True False True
192.0 False False False False False True False False True False True
doc=pd.ExcelWriter('tests.xlsx',engine='xlsxwriter')
pv2=pd.DataFrame(pv)
pv2.to_excel(doc,sheet_name='Sheet1')
fl
中的值将单元格颜色设置为 75% 灰色是真的。我该怎么做?
最佳答案
如果您将两个数据框都存储在 Excel 工作簿中,您可以使用 conditional formatting根据另一个区域中的值突出显示一个区域中的单元格。另见 Adding Conditional Formatting to Dataframe output .
如果您只想添加值数据框,那么我建议不要使用 pd.ExcelWriter()
直接使用XlsxWriter formatting .
关于python - Pandas +xlsx : format cells based on another dataframe,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46313249/
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
我有一个 largeDataFrame(多列和数十亿行)和一个 smallDataFrame(单列和 10,000 行)。 只要 largeDataFrame 中的 some_identifier 列
我有一个函数,可以在其中规范化 DataFrame 的前 N 列。我想返回规范化的 DataFrame,但不要管原来的。然而,该函数似乎也会对传递的 DataFrame 进行变异! using D
我想在 Scala 中使用指定架构在 DataFrame 上创建。我尝试过使用 JSON 读取(我的意思是读取空文件),但我认为这不是最佳实践。 最佳答案 假设您想要一个具有以下架构的数据框: roo
我正在尝试从数据框中删除一些列,并且不希望返回修改后的数据框并将其重新分配给旧数据框。相反,我希望该函数只修改数据框。这是我尝试过的,但它似乎并没有做我所除外的事情。我的印象是参数是作为引用传递的,而
我有一个包含大约 60000 个数据的庞大数据集。我会首先使用一些标准对整个数据集进行分组,接下来我要做的是将整个数据集分成标准内的许多小数据集,并自动对每个小数据集运行一个函数以获取参数对于每个小数
我遇到了以下问题,并有一个想法来解决它,但没有成功:我有一个月内每个交易日的 DAX 看涨期权和看跌期权数据。经过转换和一些计算后,我有以下 DataFrame: DaxOpt 。现在的目标是消除没有
我正在尝试做一些我认为应该是单行的事情,但我正在努力把它做好。 我有一个大数据框,我们称之为lg,还有一个小数据框,我们称之为sm。每个数据帧都有一个 start 和一个 end 列,以及多个其他列所
我有一个像这样的系列数据帧的数据帧: state1 state2 state3 ... sym1 sym
我有一个大约有 9k 行和 57 列的数据框,这是“df”。 我需要一个新的数据框:'df_final'- 对于“df”的每一行,我必须将每一行复制“x”次,并将每一行中的日期逐一增加,也就是“x”次
假设有一个 csv 文件如下: # data.csv 0,1,2,3,4 a,3.0,3.0,3.0,3.0,3.0 b,3.0,3.0,3.0,3.0,3.0 c,3.0,3.0,3.0,3.0,3
我只想知道是否有人对以下问题有更优雅的解决方案: 我有两个 Pandas DataFrame: import pandas as pd df1 = pd.DataFrame([[1, 2, 3], [
我有一个 pyspark 数据框,我需要将其转换为 python 字典。 下面的代码是可重现的: from pyspark.sql import Row rdd = sc.parallelize([R
我有一个 DataFrame,我想在 @chain 的帮助下对其进行处理。如何存储中间结果? using DataFrames, Chain df = DataFrame(a = [1,1,2,2,2
我有一个包含 3 列的 DataFrame,名为 :x :y 和 :z,它们是 Float64 类型。 :x 和 "y 在 (0,1) 上是 iid uniform 并且 z 是 x 和 y 的总和。
这个问题在这里已经有了答案: pyspark dataframe filter or include based on list (3 个答案) 关闭 2 年前。 只是想知道是否有任何有效的方法来过
我刚找到这个包FreqTables ,它允许人们轻松地从 DataFrames 构建频率表(我正在使用 DataFrames.jl)。 以下代码行返回一个频率表: df = CSV.read("exa
是否有一种快速的方法可以为 sort 指定自定义订单?/sort!在 Julia DataFrames 上? julia> using DataFrames julia> srand(1); juli
在 Python Pandas 和 R 中,可以轻松去除重复的列 - 只需加载数据、分配列名,然后选择那些不重复的列。 使用 Julia Dataframes 处理此类数据的最佳实践是什么?此处不允许
我是一名优秀的程序员,十分优秀!