- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我尝试使用 tuneParams() 和 resample(),它们都来自 mlr 包,以仔细检查我的交叉验证 RMSE。
但是,我无法让这 2 个函数产生相同的结果。
通过 mlr 包调整参数:
train <- cars
invisible(library(mlr))
invisible(library(mlrMBO))
invisible(library(doParallel))
set.seed(0)
# Leaner
lrn <- makeLearner("regr.xgboost", par.vals = list(eta = 0.3, objective = "reg:linear"))
lrn <- makePreprocWrapperCaret(lrn, ppc.scale = TRUE, ppc.center = TRUE)
# Task
task <- makeRegrTask(data = train, target = "dist")
# Resampling strategy
cv_desc <- makeResampleDesc('CV', iters = 4)
cv_inst <- makeResampleInstance(cv_desc, task = task)
# Parameter set
ps <- makeParamSet(
makeIntegerParam("nrounds", lower = 30, upper = 60),
makeNumericParam("lambda", lower = 0, upper = 1),
makeNumericParam("alpha", lower = 0, upper = 1)
)
# Control
mbo.ctrl <- makeMBOControl()
mbo.ctrl <- setMBOControlTermination(mbo.ctrl, iters = 50)
ctrl <- mlr:::makeTuneControlMBO(mbo.control = mbo.ctrl)
# Tune model:
cl <- makeCluster(detectCores(), type='PSOCK')
registerDoParallel(cl)
params_res <- tuneParams(lrn, task, cv_inst, par.set = ps, control = ctrl,
show.info = FALSE, measures = mlr::rmse)
registerDoSEQ()
print(params_res)
尝试使用重采样函数重现 RMSE:
set.seed(0)
lrn <- makeLearner("regr.xgboost", par.vals = params_res$x)
lrn <- makePreprocWrapperCaret(lrn, ppc.scale = TRUE, ppc.center = TRUE)
r = resample(lrn, task, cv_inst, measures = mlr::rmse)
mean(r$measures.test$rmse)
最佳答案
mlr 使用的聚合度量在 tutorial 中进行了描述.
对于 RMSE,使用 test.rmse
。这意味着,所有测试性能都是通过 RMSE 汇总的,而不是算术平均值。
train <- cars
#invisible(library(mlr))
invisible(library(mlrMBO))
#> Loading required package: mlr
#> Loading required package: ParamHelpers
#> Registered S3 methods overwritten by 'ggplot2':
#> method from
#> [.quosures rlang
#> c.quosures rlang
#> print.quosures rlang
#> Loading required package: smoof
#> Loading required package: BBmisc
#>
#> Attaching package: 'BBmisc'
#> The following object is masked from 'package:base':
#>
#> isFALSE
#> Loading required package: checkmate
invisible(library(doParallel))
#> Loading required package: foreach
#> Loading required package: iterators
#> Loading required package: parallel
set.seed(0)
# Leaner
lrn <- makeLearner("regr.xgboost", par.vals = list(eta = 0.3, objective = "reg:linear"))
#> Warning in makeParam(id = id, type = "numeric", learner.param = TRUE, lower = lower, : NA used as a default value for learner parameter missing.
#> ParamHelpers uses NA as a special value for dependent parameters.
lrn <- makePreprocWrapperCaret(lrn, ppc.scale = TRUE, ppc.center = TRUE)
# Task
task <- makeRegrTask(data = train, target = "dist")
# Resampling strategy
cv_desc <- makeResampleDesc('CV', iters = 4)
cv_inst <- makeResampleInstance(cv_desc, task = task)
# Parameter set
ps <- makeParamSet(
makeIntegerParam("nrounds", lower = 30, upper = 60),
makeNumericParam("lambda", lower = 0, upper = 1),
makeNumericParam("alpha", lower = 0, upper = 1)
)
# Control
mbo.ctrl <- makeMBOControl()
mbo.ctrl <- setMBOControlTermination(mbo.ctrl, iters = 50)
ctrl <- mlr:::makeTuneControlMBO(mbo.control = mbo.ctrl)
# Tune model:
cl <- makeCluster(detectCores(), type='PSOCK')
registerDoParallel(cl)
params_res <- tuneParams(lrn, task, cv_inst, par.set = ps, control = ctrl,
show.info = FALSE, measures = mlr::rmse)
registerDoSEQ()
print(params_res)
#> Tune result:
#> Op. pars: nrounds=30; lambda=0.994; alpha=1
#> rmse.test.rmse=17.4208912
lrn <- makeLearner("regr.xgboost", par.vals = params_res$x)
#> Warning in makeParam(id = id, type = "numeric", learner.param = TRUE, lower = lower, : NA used as a default value for learner parameter missing.
#> ParamHelpers uses NA as a special value for dependent parameters.
lrn <- makePreprocWrapperCaret(lrn, ppc.scale = TRUE, ppc.center = TRUE)
r = resample(lrn, task, cv_inst, measures = mlr::rmse)
#> Resampling: cross-validation
#> Measures: rmse
#> [Resample] iter 1: 17.0026234
#> [Resample] iter 2: 16.5500225
#> [Resample] iter 3: 21.5016809
#> [Resample] iter 4: 13.7344482
#>
#> Aggregated Result: rmse.test.rmse=17.4208912
#>
all.equal(as.numeric(r$aggr), as.numeric(params_res$y))
#> [1] TRUE
all.equal(sqrt(mean(r$measures.test$rmse^2)), as.numeric(params_res$y))
#> [1] TRUE
由 reprex package 创建于 2019-05-18 (v0.2.1)
关于r - mlr 包 : Cross-validation with tuneParams() and resample() yield different results,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56197388/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!