gpt4 book ai didi

sql - 查询语句在 oracle 上执行时间很长

转载 作者:行者123 更新时间:2023-12-04 20:09:36 27 4
gpt4 key购买 nike

我的任务是改进我公司的现有代码/查询,

数据库版本

Oracle Database 10g Enterprise Edition Release 10.2.0.4.0 - 64bi
PL/SQL Release 10.2.0.4.0 - Production
"CORE 10.2.0.4.0 Production"
TNS for IBM/AIX RISC System/6000: Version 10.2.0.4.0 - Productio
NLSRTL Version 10.2.0.4.0 - Production

这就是问题所在——当执行下面的代码时,完成这项工作所需的时间超过 4 个小时,大约 7 到 8 个小时。

enter image description here

3小时37分钟内395行数据
  SELECT DISTINCT GROUP_DIST_NUMBER, BEGIN_DATE, PRICE_DROP_DATE
FROM (SELECT DISTINCT
G.GROUP_DIST_NUMBER,
TO_DATE (:B2, 'DD-MON-YYYY') BEGIN_DATE,
TO_DATE (:B2, 'DD-MON-YYYY') PRICE_DROP_DATE
FROM POS_DISTI_GROUP G,
POS_CUST_XREF M,
S_CPT_SEQ_NO C,
PP_STD_PRICE P,
S_CPT_AUDIT A,
RPT_PRODUCT_VALUE_LEVEL L
WHERE G.END_DATE > TO_DATE (:B2, 'DD-MON-YYYY')
AND G.GROUP_DIST_NUMBER = M.DIST_NUMBER
AND M.SG_BILL_TO_CUST_NO = A.BILL_TO_CUST_NO
AND A.START_DATE <= TO_DATE (:B2, 'DD-MON-YYYY')
AND A.END_DATE >= TO_DATE (:B2, 'DD-MON-YYYY')
AND L.PROD_VALUE = P.PROD_VALUE
AND L.PROD_LEVEL = P.PROD_LEVEL
AND C.CPT_PRICE_CODE IN
(SELECT /*+ PRECOMPUTE_SUBQUERY */
DISTINCT C1.CPT_PRICE_CODE
FROM PP_STD_PRICE P1,
S_CPT_PRICE_CODE C1,
S_CPT_SEQ_NO S1
WHERE P1.STDP_ID = :B1
AND C1.CPT_PRICE_CAT LIKE 'NB%'
AND C1.CPT_PRICE_CODE = S1.CPT_PRICE_CODE
AND S1.PRICE_PROTECTABLE = 'Y')
AND C.CPT_PRICE_CODE = P.CUST_PRICE_TYPE
AND P.STDP_ID = :B1
AND A.CUST_PRICE_TYPE = C.CPT_BILL_CODE
AND M.ACTIVE_IND != 'N'
AND (M.CATEGORY_TYPE LIKE 'DIRECT%' OR M.INDIRECT_DISTI = 'Y')
AND TRUNC (M.ARCHIVE_DATE) > TRUNC (SYSDATE)
UNION
SELECT G.GROUP_DIST_NUMBER,
P.BEGIN_DATE,
MIN (INVT.PRICE_DROP_DATE) PRICE_DROP_DATE
FROM POS_DISTI_GROUP G,
POS_CUST_XREF M,
PP_DEBIT_AUTHORIZATION P,
RPT_PRODUCT_VALUE_LEVEL L,
POS_PP_INVENTORY INVT
WHERE G.END_DATE > TO_DATE (:B2, 'DD-MON-YYYY')
AND G.GROUP_DIST_NUMBER = M.DIST_NUMBER
AND M.ACTIVE_IND != 'N'
AND (M.CATEGORY_TYPE LIKE 'DIRECT%' OR M.INDIRECT_DISTI = 'Y')
AND G.DIST_NUMBER = P.DIST_NUMBER
AND L.PROD_VALUE = P.PROD_VALUE
AND L.PROD_LEVEL = P.PROD_LEVEL
AND P.BEGIN_DATE >= TO_DATE (:B2, 'DD-MON-YYYY') - 6
AND P.BEGIN_DATE <= TO_DATE (:B2, 'DD-MON-YYYY')
AND INVT.DIST_NUMBER = G.GROUP_DIST_NUMBER
AND INVT.STMODEL = L.MOD_DESC
AND INVT.PPCF_SHOW_DATE = P.BEGIN_DATE
AND P.PRICE_TYPE = 'I'
AND ( P.POS_PROCESSED_FLAG IS NULL
OR P.POS_PROCESSED_FLAG != 'C')
AND P.POS_PP_FLAG = 'Y'
AND TRUNC (M.ARCHIVE_DATE) > TRUNC (SYSDATE)
GROUP BY G.GROUP_DIST_NUMBER, P.BEGIN_DATE)
ORDER BY GROUP_DIST_NUMBER;

我不知道如何调整此查询语句以提高性能并使其执行得更快

这里是解释计划
--------------------------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Pstart| Pstop |
--------------------------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 101 | 2525 | | 24156 (10)| | |
| 1 | SORT ORDER BY | | 101 | 2525 | | 24156 (10)| | |
| 2 | VIEW | | 101 | 2525 | | 24155 (10)| | |
| 3 | SORT UNIQUE | | 101 | 17691 | | 24155 (75)| | |
| 4 | UNION-ALL | | | | | | | |
|* 5 | HASH JOIN | | 10M| 1680M| | 6446 (5)| | |
|* 6 | TABLE ACCESS FULL | S_CPT_SEQ_NO | 651 | 5208 | | 5 (0)| | |
|* 7 | HASH JOIN | | 2383K| 379M| | 6318 (3)| | |
|* 8 | TABLE ACCESS FULL | POS_DISTI_GROUP | 100 | 1800 | | 5 (0)| | |
|* 9 | HASH JOIN | | 2396K| 340M| 4320K| 6283 (3)| | |
| 10 | VIEW | RPT_PRODUCT_VALUE_LEVEL | 138K| 2697K| | 1905 (3)| | |
| 11 | UNION-ALL | | | | | | | |
|* 12 | HASH JOIN RIGHT OUTER | | 13965 | 627K| | 91 (5)| | |
| 13 | INDEX FULL SCAN | PK_SEAEGO_PRODUCT_HIERARCHY | 298 | 4172 | | 1 (0)| | |
|* 14 | HASH JOIN RIGHT OUTER | | 13965 | 436K| | 89 (4)| | |
| 15 | INDEX FULL SCAN | PK_S_CAP_GROUP | 2 | 8 | | 1 (0)| | |
| 16 | TABLE ACCESS FULL | SMA_STMODEL | 13965 | 381K| | 87 (3)| | |
|* 17 | HASH JOIN RIGHT OUTER | | 14175 | 1065K| | 158 (5)| | |
| 18 | INDEX FAST FULL SCAN | PK_S_FAMILY | 1366 | 5464 | | 2 (0)| | |
|* 19 | HASH JOIN RIGHT OUTER | | 14175 | 1010K| | 156 (5)| | |
| 20 | INDEX FULL SCAN | PK_F_MODPRODMGR | 22 | 88 | | 1 (0)| | |
|* 21 | HASH JOIN | | 14175 | 955K| | 154 (4)| | |
| 22 | TABLE ACCESS FULL | SMA_PRODUCTMODEL | 14132 | 317K| | 62 (2)| | |
|* 23 | HASH JOIN RIGHT OUTER | | 13965 | 627K| | 91 (5)| | |
| 24 | INDEX FULL SCAN | PK_SEAEGO_PRODUCT_HIERARCHY | 298 | 4172 | | 1 (0)| | |
|* 25 | HASH JOIN RIGHT OUTER | | 13965 | 436K| | 89 (4)| | |
| 26 | INDEX FULL SCAN | PK_S_CAP_GROUP | 2 | 8 | | 1 (0)| | |
| 27 | TABLE ACCESS FULL | SMA_STMODEL | 13965 | 381K| | 87 (3)| | |
| 28 | MAT_VIEW ACCESS FULL | RPT_PROD_MV | 109K| 1288K| | 1656 (3)| | |
|* 29 | HASH JOIN | | 141K| 17M| | 3191 (3)| | |
|* 30 | INDEX RANGE SCAN | UK_PP_STD_PRICE_STDP_ID | 4128 | 108K| | 23 (0)| | |
|* 31 | HASH JOIN | | 5341 | 532K| | 3165 (3)| | |
|* 32 | TABLE ACCESS FULL | POS_CUST_XREF | 54 | 2268 | | 25 (4)| | |
|* 33 | HASH JOIN | | 193K| 11M| | 3137 (3)| | |
|* 34 | TABLE ACCESS FULL | S_CPT_AUDIT | 68 | 2108 | | 76 (4)| | |
|* 35 | HASH JOIN | | 745K| 20M| | 3052 (2)| | |
| 36 | TABLE ACCESS FULL | S_CPT_SEQ_NO | 1301 | 16913 | | 5 (0)| | |
| 37 | MERGE JOIN CARTESIAN | | 88205 | 1378K| | 3037 (2)| | |
|* 38 | INDEX RANGE SCAN | UK_PP_STD_PRICE_STDP_ID | 4128 | 20640 | | 23 (0)| | |
| 39 | BUFFER SORT | | 21 | 231 | | 3014 (2)| | |
|* 40 | TABLE ACCESS FULL | S_CPT_PRICE_CODE | 21 | 231 | | 1 (0)| | |
| 41 | HASH GROUP BY | | 1 | 191 | | 16421 (5)| | |
|* 42 | FILTER | | | | | | | |
| 43 | NESTED LOOPS | | 1 | 191 | | 16419 (5)| | |
|* 44 | HASH JOIN | | 7 | 1176 | | 16370 (5)| | |
|* 45 | HASH JOIN | | 74 | 8584 | | 4790 (3)| | |
|* 46 | HASH JOIN | | 60 | 3780 | | 31 (7)| | |
|* 47 | TABLE ACCESS FULL | POS_CUST_XREF | 60 | 2100 | | 25 (4)| | |
|* 48 | TABLE ACCESS FULL | POS_DISTI_GROUP | 100 | 2800 | | 5 (0)| | |
|* 49 | TABLE ACCESS FULL | PP_DEBIT_AUTHORIZATION | 345 | 18285 | | 4759 (3)| | |
| 50 | PARTITION RANGE ALL | | 18192 | 923K| | 11579 (6)| 1 | 33 |
|* 51 | INDEX FAST FULL SCAN | POS_PP_INVENTORY_PK | 18192 | 923K| | 11579 (6)| 1 | 33 |
|* 52 | VIEW | RPT_PRODUCT_VALUE_LEVEL | 1 | 23 | | 7 (0)| | |
| 53 | UNION ALL PUSHED PREDICATE | | | | | | | |
|* 54 | FILTER | | | | | | | |
| 55 | NESTED LOOPS OUTER | | 1 | 46 | | 2 (0)| | |
| 56 | NESTED LOOPS OUTER | | 1 | 42 | | 2 (0)| | |
| 57 | TABLE ACCESS BY INDEX ROWID | SMA_STMODEL | 1 | 28 | | 2 (0)| | |
|* 58 | INDEX UNIQUE SCAN | PK_SMA_STMODEL | 1 | | | 1 (0)| | |
|* 59 | INDEX UNIQUE SCAN | PK_SEAEGO_PRODUCT_HIERARCHY | 298 | 4172 | | 0 (0)| | |
|* 60 | INDEX UNIQUE SCAN | PK_S_CAP_GROUP | 2 | 8 | | 0 (0)| | |
| 61 | NESTED LOOPS OUTER | | 1 | 77 | | 3 (0)| | |
| 62 | NESTED LOOPS OUTER | | 1 | 73 | | 3 (0)| | |
| 63 | NESTED LOOPS OUTER | | 1 | 69 | | 3 (0)| | |
| 64 | NESTED LOOPS OUTER | | 1 | 65 | | 3 (0)| | |
| 65 | NESTED LOOPS | | 1 | 51 | | 3 (0)| | |
|* 66 | TABLE ACCESS BY INDEX ROWID| SMA_PRODUCTMODEL | 1 | 23 | | 2 (0)| | |
|* 67 | INDEX UNIQUE SCAN | PK_SMA_PRODUCTMODEL | 1 | | | 1 (0)| | |
| 68 | TABLE ACCESS BY INDEX ROWID| SMA_STMODEL | 1 | 28 | | 1 (0)| | |
|* 69 | INDEX UNIQUE SCAN | PK_SMA_STMODEL | 1 | | | 0 (0)| | |
|* 70 | INDEX UNIQUE SCAN | PK_SEAEGO_PRODUCT_HIERARCHY | 298 | 4172 | | 0 (0)| | |
|* 71 | INDEX UNIQUE SCAN | PK_S_FAMILY | 1366 | 5464 | | 0 (0)| | |
|* 72 | INDEX UNIQUE SCAN | PK_S_CAP_GROUP | 2 | 8 | | 0 (0)| | |
|* 73 | INDEX UNIQUE SCAN | PK_F_MODPRODMGR | 22 | 88 | | 0 (0)| | |
|* 74 | MAT_VIEW ACCESS BY INDEX ROWID | RPT_PROD_MV | 1 | 24 | | 2 (0)| | |
|* 75 | INDEX UNIQUE SCAN | IDX_RPT_PROD_MV_PROD_NO | 1 | | | 1 (0)| | |
--------------------------------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

5 - access("C1"."CPT_PRICE_CODE"="S1"."CPT_PRICE_CODE")
6 - filter("S1"."PRICE_PROTECTABLE"='Y')
7 - access("G"."GROUP_DIST_NUMBER"="M"."DIST_NUMBER")
8 - filter("G"."END_DATE">TO_DATE(:B2,'DD-MON-YYYY'))
9 - access("L"."PROD_VALUE"="P"."PROD_VALUE" AND "L"."PROD_LEVEL"="P"."PROD_LEVEL")
12 - access("ST"."MARKETING_NAME"="PH"."MARKETING_NAME"(+))
14 - access("ST"."MOD_CAPACITY_FORMATTED"="SCG"."MOD_CAPACITY_FORMATTED"(+))
17 - access("SF"."FAMILY"(+)=SUBSTRB("PM"."MODEL",1,3))
19 - access("PM"."DESIGN_APPLICATION"="DA"."DESIGN_APPLICATION"(+))
21 - access("PM"."MOD_DESC"="ST"."MOD_DESC")
23 - access("ST"."MARKETING_NAME"="PH"."MARKETING_NAME"(+))
25 - access("ST"."MOD_CAPACITY_FORMATTED"="SCG"."MOD_CAPACITY_FORMATTED"(+))
29 - access("C"."CPT_PRICE_CODE"="P"."CUST_PRICE_TYPE")
30 - access("P"."STDP_ID"=TO_NUMBER(:B1))
31 - access("M"."SG_BILL_TO_CUST_NO"="A"."BILL_TO_CUST_NO")
32 - filter("M"."SG_BILL_TO_CUST_NO" IS NOT NULL AND ("M"."INDIRECT_DISTI"='Y' OR "M"."CATEGORY_TYPE" LIKE 'DIRECT%') AND
"M"."ACTIVE_IND"<>'N' AND TRUNC(INTERNAL_FUNCTION("M"."ARCHIVE_DATE"))>TRUNC(SYSDATE@!))
33 - access("A"."CUST_PRICE_TYPE"="C"."CPT_BILL_CODE")
34 - filter("A"."START_DATE"<=TO_DATE(:B2,'DD-MON-YYYY') AND "A"."END_DATE">=TO_DATE(:B2,'DD-MON-YYYY'))
35 - access("C"."CPT_PRICE_CODE"="C1"."CPT_PRICE_CODE")
38 - access("P1"."STDP_ID"=TO_NUMBER(:B1))
40 - filter("C1"."CPT_PRICE_CAT" LIKE 'NB%')
42 - filter(TO_DATE(:B2,'DD-MON-YYYY')-6<=TO_DATE(:B2,'DD-MON-YYYY'))
44 - access("INVT"."DIST_NUMBER"="G"."GROUP_DIST_NUMBER" AND "INVT"."PPCF_SHOW_DATE"="P"."BEGIN_DATE")
45 - access("G"."DIST_NUMBER"="P"."DIST_NUMBER")
46 - access("G"."GROUP_DIST_NUMBER"="M"."DIST_NUMBER")
47 - filter(("M"."INDIRECT_DISTI"='Y' OR "M"."CATEGORY_TYPE" LIKE 'DIRECT%') AND "M"."ACTIVE_IND"<>'N' AND
TRUNC(INTERNAL_FUNCTION("M"."ARCHIVE_DATE"))>TRUNC(SYSDATE@!))
48 - filter("G"."END_DATE">TO_DATE(:B2,'DD-MON-YYYY'))
49 - filter("P"."PRICE_TYPE"='I' AND "P"."POS_PP_FLAG"='Y' AND ("P"."POS_PROCESSED_FLAG"<>'C' OR "P"."POS_PROCESSED_FLAG"
IS NULL) AND "P"."BEGIN_DATE"<=TO_DATE(:B2,'DD-MON-YYYY') AND "P"."BEGIN_DATE">=TO_DATE(:B2,'DD-MON-YYYY')-6)
51 - filter("INVT"."PPCF_SHOW_DATE"<=TO_DATE(:B2,'DD-MON-YYYY') AND "INVT"."PPCF_SHOW_DATE">=TO_DATE(:B2,'DD-MON-YYYY')-6)
52 - filter("L"."PROD_LEVEL"="P"."PROD_LEVEL")
54 - filter("P"."PROD_VALUE"="INVT"."STMODEL")
58 - access("ST"."MOD_DESC"="P"."PROD_VALUE")
59 - access("ST"."MARKETING_NAME"="PH"."MARKETING_NAME"(+))
60 - access("ST"."MOD_CAPACITY_FORMATTED"="SCG"."MOD_CAPACITY_FORMATTED"(+))
66 - filter("PM"."MOD_DESC"="INVT"."STMODEL")
67 - access("PM"."MODEL"="P"."PROD_VALUE")
69 - access("ST"."MOD_DESC"="INVT"."STMODEL")
70 - access("ST"."MARKETING_NAME"="PH"."MARKETING_NAME"(+))
71 - access("SF"."FAMILY"(+)=SUBSTRB("PM"."MODEL",1,3))
72 - access("ST"."MOD_CAPACITY_FORMATTED"="SCG"."MOD_CAPACITY_FORMATTED"(+))
73 - access("PM"."DESIGN_APPLICATION"="DA"."DESIGN_APPLICATION"(+))
74 - filter("MOD_DESC"="INVT"."STMODEL")
75 - access("PROD_NO"="P"."PROD_VALUE")

Note
-----
- 'PLAN_TABLE' is old version

和表的行数统计
    TABLE_Name              NUM_ROWS
----------- ---------
POS_DISTI_GROUP 2009
POS_CUST_XREF 2801
S_CPT_SEQ_NO 1301
PP_STD_PRICE 2658450
S_CPT_AUDIT 27200
PP_DEBIT_AUTHORIZATION 1199420
POS_PP_INVENTORY 7276850
PP_STD_PRICE 2658450
S_CPT_PRICE_CODE 192
S_CPT_SEQ_NO 1301
SMA_STMODEL 13965
RPT_PROD_MV 109980

创建表语句。 CLICK HERE

表说明。 CLICK HERE

按照@jonearles 的建议重新运行gather_plan_statistics 来检索EXPLAIN PLAN。 CLICK HERE

*来自谷歌文档的链接

最佳答案

问题

执行计划中的聚合发生得太晚了。计划 ID 4 和 5 生成 130 亿行,占执行时间的 95%。 Oracle 错误地认为行数会更小,并且应该将较早的聚合合并在一起。

计划 ID 6 到 40 代表内联 View 的前半部分,在 UNION 之前.查询的那部分有两个 DISTINCT s,但执行计划的那部分没有任何类型的聚合操作。 Oracle 错误地认为最好先加入所有内容并执行一个 SORT UNIQUE , 而不是执行多个 SORT UNIQUEHASH GROUP BY并结合结果。

问题复现

在没有完全导出的情况下完全重现这个问题几乎是不可能的。尽管它只是一个中等复杂的 SQL 语句,但它涉及到数千个变量。下面的代码仅演示了 Oracle 如何错误地合并聚合操作。

首先,创建两个简单的表。每个都有 100K 行。 TEST1 有从 1 到 100000 的数字。TEST2 包含 100000 行,但只有一个不同的数字。为了人为地制定一个糟糕的计划,在 TEST2 上收集统计数据过早。优化器认为 TEST2 只有一行,但实际上有 100000。

drop table test1 purge;
drop table test2 purge;

create table test1(a number);
create table test2(a number);

insert into test1 select level from dual connect by level <= 100000;
insert into test2 values (1);
commit;

begin
dbms_stats.gather_table_stats(user, 'test1');
dbms_stats.gather_table_stats(user, 'test2');
end;
/

insert into test2 select 1 from dual connect by level <= 100000;
commit;

下面的示例查询检索所有不同的 TEST1.A,其中 A 也在不同的 TEST2.A 中。

默认情况下,使用人为错误的统计信息,Oracle 先连接表,然后执行 HASH GROUP BYHASH UNIQUE .这是一个糟糕的计划,它加入了所有人
来自 TEST2 的 100K 值。最好执行 HASH GROUP BY首先,然后只加入该表中的 1 行。
explain plan for
select distinct a from test1 where a in (select a from test2 group by a);

select * from table(dbms_xplan.display(format => 'outline'));

------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 8 | 79 (2)| 00:00:01 |
| 1 | HASH UNIQUE | | 1 | 8 | 79 (2)| 00:00:01 |
| 2 | HASH GROUP BY | | 1 | 8 | 79 (2)| 00:00:01 |
|* 3 | HASH JOIN | | 1 | 8 | 79 (2)| 00:00:01 |
| 4 | TABLE ACCESS FULL| TEST2 | 1 | 3 | 3 (0)| 00:00:01 |
| 5 | TABLE ACCESS FULL| TEST1 | 100K| 488K| 76 (2)| 00:00:01 |
------------------------------------------------------------------------------

潜在解决方案 #1:提示

不幸的是,没有官方提示可以控制何时何地进行排序和分组。通过玩弄 outline格式选项 我找到了一些可能有用的提示: USE_HASH_AGGREGATION , OUTLINE_LEAF , 和 PLACE_DISTINCT . (这些提示真的很棘手 - 我在示例中使用 group by 而不是另一个 distinct 的原因是因为我在 PLACE_DISTINCT 提示上遇到了很多麻烦!)

使用这些未记录的提示可以制定更好的计划。 TEST2 的结果通过 HASH GROUP BY马上,正如他们应该的那样。这类似于如果统计准确则将生成的计划。
explain plan for
select /*+ USE_HASH_AGGREGATION(@"SEL$5DA710D3") OUTLINE_LEAF(@"SEL$683B0107") */
distinct a from test1 where a in (select a from test2 group by a);

select * from table(dbms_xplan.display(format => 'outline alias'));

----------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
----------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 8 | 79 (2)| 00:00:01 |
| 1 | HASH UNIQUE | | 1 | 8 | 79 (2)| 00:00:01 |
|* 2 | HASH JOIN SEMI | | 1 | 8 | 79 (2)| 00:00:01 |
| 3 | VIEW | VW_NSO_1 | 1 | 3 | 3 (0)| 00:00:01 |
| 4 | HASH GROUP BY | | 1 | 3 | 3 (0)| 00:00:01 |
| 5 | TABLE ACCESS FULL| TEST2 | 1 | 3 | 3 (0)| 00:00:01 |
| 6 | TABLE ACCESS FULL | TEST1 | 100K| 488K| 76 (2)| 00:00:01 |
----------------------------------------------------------------------------------

可能的解决方案 #2:强制执行 ROWNUM 计划。

一个更简单、更安全的版本是使用 ROWNUM . ROWNUM是一个伪列,表示返回的行的顺序。当有 ROWNUM Oracle 无法移动 distinctgroup by因为它会影响那个顺序。

不幸的是,这个技巧需要额外的代码并在计划中生成额外的步骤。这些额外的步骤大多只是传递数据,不应该减慢完成的速度。
explain plan for
select distinct a from test1 where a in
(
--Extra level only because we only want to project one column.
--It's syntactically required, but the optimizer throws out this inline view.
select a
from
(
--The ROWNUM forces everything in this inline view to happen separately.
select a, rownum
from
(
select a from test2 group by a
)
)
);

select * from table(dbms_xplan.display(format => 'outline alias'));

---------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
---------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 8 | 79 (2)| 00:00:01 |
| 1 | HASH UNIQUE | | 1 | 8 | 79 (2)| 00:00:01 |
|* 2 | HASH JOIN SEMI | | 1 | 8 | 79 (2)| 00:00:01 |
| 3 | VIEW | | 1 | 3 | 3 (0)| 00:00:01 |
| 4 | COUNT | | | | | |
| 5 | VIEW | | 1 | 3 | 3 (0)| 00:00:01 |
| 6 | HASH GROUP BY | | 1 | 3 | 3 (0)| 00:00:01 |
| 7 | TABLE ACCESS FULL| TEST2 | 1 | 3 | 3 (0)| 00:00:01 |
| 8 | TABLE ACCESS FULL | TEST1 | 100K| 488K| 76 (2)| 00:00:01 |
---------------------------------------------------------------------------------

潜在解决方案#3:修正基数估计并希望最好。

如果估计的行数准确,则计划几乎总是好的。当行估计值相差很远时,找到基数错误的执行计划的第一部分。对于此计划,它似乎是计划 ID 36。 E-Rows 和 A-Rows 相差一个数量级:
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads | OMem | 1Mem | O/1/M |
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
...
|* 36 | TABLE ACCESS FULL | POS_CUST_XREF | 1 | 54 | 579 |00:00:00.01 | 131 | 0 | | | |

步骤 36 有一个涉及 SYSDATE 的复杂谓词。
  36 - filter(("M"."SG_BILL_TO_CUST_NO" IS NOT NULL AND ("M"."INDIRECT_DISTI"='Y' OR "M"."CATEGORY_TYPE" LIKE 'DIRECT%') AND "M"."ACTIVE_IND"<>'N' AND
TRUNC(INTERNAL_FUNCTION("M"."ARCHIVE_DATE"))>TRUNC(SYSDATE@!)))

即使有最新的统计数据,这种情况也很难预测。动态采样可能会有所帮助。尝试使用这样的顶级提示重新运行查询:
SELECT /*+ dynamic_sampling(6) */ ...

解决这些早期的差异通常会解决计划后期的其他问题。此示例只是基数不匹配的一种可能来源。可能需要其他技巧来改进其他基数估计。这可能是一种非常困难的方法,但它可以通过多种方式获得返回。

红鲱鱼

任何中等复杂的 SQL 语句都有许多潜在的改进。评论和答案中有几个好主意。但是在调整时,始终必须关注最慢的地方,而不是最容易修复的地方。这听起来很明显,但这是一个非常容易落入的陷阱。这就是为什么我要你使用 /*+ gather_plan_statistics*/ ,这就是为什么我的回答只关注计划中实际时间较长的部分。

例如,在我之前的评论中,我建议查看 NESTED LOOPS其中 ROWS = 1。现在我们有了实际时间,我们知道建议没有帮助。 (尽管一般来说,您仍然应该对具有大表但 ROWS=1 的计划持怀疑态度。)

关于sql - 查询语句在 oracle 上执行时间很长,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19922915/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com