- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我已经实现了 Bayesian Probabilistic Matrix Factorization算法使用 pymc3
在 Python 中。我还实现了它的前身,概率矩阵分解(PMF)。 See my previous question引用这里使用的数据。
我在使用 NUTS 采样器绘制 MCMC 样本时遇到问题。我使用来自 PMF 的 MAP 初始化模型参数,并使用高斯随机绘制的超参数散布在 0 左右。但是,我得到了 PositiveDefiniteError
为采样器设置步进对象时。我已经验证了来自 PMF 的 MAP 估计是合理的,所以我希望它与超参数的初始化方式有关。这是 PMF 模型:
import pymc3 as pm
import numpy as np
import pandas as pd
import theano
import scipy as sp
data = pd.read_csv('jester-dense-subset-100x20.csv')
n, m = data.shape
test_size = m / 10
train_size = m - test_size
train = data.copy()
train.ix[:,train_size:] = np.nan # remove test set data
train[train.isnull()] = train.mean().mean() # mean value imputation
train = train.values
test = data.copy()
test.ix[:,:train_size] = np.nan # remove train set data
test = test.values
# Low precision reflects uncertainty; prevents overfitting
alpha_u = alpha_v = 1/np.var(train)
alpha = np.ones((n,m)) * 2 # fixed precision for likelihood function
dim = 10 # dimensionality
# Specify the model.
with pm.Model() as pmf:
pmf_U = pm.MvNormal('U', mu=0, tau=alpha_u * np.eye(dim),
shape=(n, dim), testval=np.random.randn(n, dim)*.01)
pmf_V = pm.MvNormal('V', mu=0, tau=alpha_v * np.eye(dim),
shape=(m, dim), testval=np.random.randn(m, dim)*.01)
pmf_R = pm.Normal('R', mu=theano.tensor.dot(pmf_U, pmf_V.T),
tau=alpha, observed=train)
# Find mode of posterior using optimization
start = pm.find_MAP(fmin=sp.optimize.fmin_powell)
n, m = data.shape
dim = 10 # dimensionality
beta_0 = 1 # scaling factor for lambdas; unclear on its use
alpha = np.ones((n,m)) * 2 # fixed precision for likelihood function
logging.info('building the BPMF model')
std = .05 # how much noise to use for model initialization
with pm.Model() as bpmf:
# Specify user feature matrix
lambda_u = pm.Wishart(
'lambda_u', n=dim, V=np.eye(dim), shape=(dim, dim),
testval=np.random.randn(dim, dim) * std)
mu_u = pm.Normal(
'mu_u', mu=0, tau=beta_0 * lambda_u, shape=dim,
testval=np.random.randn(dim) * std)
U = pm.MvNormal(
'U', mu=mu_u, tau=lambda_u, shape=(n, dim),
testval=np.random.randn(n, dim) * std)
# Specify item feature matrix
lambda_v = pm.Wishart(
'lambda_v', n=dim, V=np.eye(dim), shape=(dim, dim),
testval=np.random.randn(dim, dim) * std)
mu_v = pm.Normal(
'mu_v', mu=0, tau=beta_0 * lambda_v, shape=dim,
testval=np.random.randn(dim) * std)
V = pm.MvNormal(
'V', mu=mu_v, tau=lambda_v, shape=(m, dim),
testval=np.random.randn(m, dim) * std)
# Specify rating likelihood function
R = pm.Normal(
'R', mu=theano.tensor.dot(U, V.T), tau=alpha,
observed=train)
# `start` is the start dictionary obtained from running find_MAP for PMF.
for key in bpmf.test_point:
if key not in start:
start[key] = bpmf.test_point[key]
with bpmf:
step = pm.NUTS(scaling=start)
PositiveDefiniteError: Scaling is not positive definite. Simple check failed. Diagonal contains negatives. Check indexes [ 0 2 ... 2206 2207 ]
find_MAP
使用具有 BPMF 等超先验的模型。这就是为什么我试图用来自 PMF 的 MAP 值进行初始化,它使用 U 和 V 上的参数的点估计而不是参数化的超先验。
最佳答案
不幸的是,Wishart 发行版不起作用。我最近在这里添加了一个警告:https://github.com/pymc-devs/pymc3/commit/642f63973ec9f807fb6e55a0fc4b31bdfa1f261e
有关此棘手分布的更多讨论,请参见此处:https://github.com/pymc-devs/pymc3/issues/538
您可以通过修复协方差矩阵来确认这是来源。如果是这种情况,我会尝试使用 JKL 先验分布:https://github.com/pymc-devs/pymc3/blob/master/pymc3/examples/LKJ_correlation.py
关于贝叶斯概率矩阵分解 (BPMF) 与 PyMC3 : PositiveDefiniteError using `NUTS` ,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29736966/
接下来是我的代码: with open("test.txt") as f_in: for line in f_in: for char in line:
我们有一个六面骰子,面编号为 1 到 6。随着 n 的增加,在第 n 卷中第一次看到 1 的概率降低。我想找到最小的卷数,使得这个概率小于某个给定的限制。 def probTest(limit):
我只是想知道为什么运行下面的代码时出现错误。我正在尝试使用 numpy 为基于文本的游戏计算概率。下面的代码不是游戏本身的代码。这仅用于测试目的和学习。感谢您提前的答复,请对我宽容一点。 from n
我目前正在创建一个与多个arduino板通信的服务器软件。由于硬件原因,我使用UDP协议(protocol)。我有一个非常简单的机制,在大多数情况下,当包裹丢失时,它会重新发送包裹。我现在有两个问题:
我想在 LinearLayout 上添加一个 fling Action 。为此,我使用了以下代码。 public class NewsActivity extends Activity { .
下面是其中一个 facebook 谜题:我无法理解如何进行此操作。 你有 C 个容器、B 个黑球和无限数量的白球。您希望以一种方式在容器之间分配球,即每个容器至少包含一个球,并且选择白球的概率大于或等
我有一个希伯来语文本,就像 "×گض¸×¨ض´×™×،ض°×کוض¹×ں",我想将它转换为可读的 unicode 希伯来语字符。 我试过这段代码: const string Str = "×گض¸×
我正在尝试使用 Random.nextDouble() 获取 1.0 和 10.0 之间的随机双数: double number = 1.0 + (10.0-1.0) * Random.nextDou
我目前已经为二进制类实现了概率(至少我这么认为)。现在我想扩展这种回归方法,并尝试将其用于波士顿数据集。不幸的是,我的算法似乎被卡住了,我当前运行的代码如下所示: from sklearn impor
我在 2D 空间中有一小组数据点(大约 10 个),每个数据点都有一个类别标签。我希望根据现有数据点标签对新数据点进行分类,并关联属于任何特定标签类别的“概率”。 基于最近邻的标签来标记新点是否合适(
我正在做我的第一个 tensorflow 项目。 我需要获得给定输入和预期序列的 ctc 概率(不是 ctc 损失)。 在 python 或 c++ 中是否有任何 api 或方法可以做到这一点? 我更
我正在尝试通过 assignment 1斯坦福 cs244n 类(class)。问题 1b 强烈建议对 Softmax 函数进行优化。我设法得到了N维向量的Softmax。我还得到了 MxN 维矩阵的
我有一个预测算法的想法,该算法可以根据所选项目先前出现的顺序准确预测随机值,并分析模式以提高准确性。 基本上是一种接受两个参数的算法,一个是一组可能的选择;另一个是这些数字的历史,分析该模式并预测序列
自 HOURS 以来,我一直在努力思考这个 TopCoder 问题,但无法找到一个完美的解决方案,并找到了下面给出的一个使用得非常漂亮的解决方案! 我想弄清楚这个解决方案如何适用于给定的问题?而我当初
我只知道如何生成随机 boolean 值(真/假)。默认概率为 50:50 但是我怎样才能用我自己的概率生成真假值呢?假设它以 40:60 或 20:80 等的概率返回 true... 最佳答案 一种
对于以下示例,我如何计算 julia 中的百分位数/概率值/尾部区域 Example : N(1100, 200) #Normally distributed with mean 1100 & st
我正在尝试修改标准 kNN 算法来获取属于某个类别的概率,而不仅仅是通常的分类。我还没有找到太多关于概率 kNN 的信息,但据我了解,它的工作原理与 kNN 类似,不同之处在于它计算给定半径内每个类的
我正在使用 PostgreSQL 为我所有数据中的变量对计算经验概率密度函数。我试图确定在计算 PDF 之前索引是否/何时更有效。我像这样运行 EXPLAIN CREATE INDEX, EXPLAI
有谁知道当查询有偏移时如何在 MySql 中请求“实时结果集”(例如:select * from table limit 10 offset 20;)。它正在经历类似 的错误 'invalid use
unsigned long long int first( int b , int c){ int h=b; //int k; for(int k=b-1;k>c;k--){ b=b*k;
我是一名优秀的程序员,十分优秀!