- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我已经实现了 Bayesian Probabilistic Matrix Factorization算法使用 pymc3
在 Python 中。我还实现了它的前身,概率矩阵分解(PMF)。 See my previous question引用这里使用的数据。
我在使用 NUTS 采样器绘制 MCMC 样本时遇到问题。我使用来自 PMF 的 MAP 初始化模型参数,并使用高斯随机绘制的超参数散布在 0 左右。但是,我得到了 PositiveDefiniteError
为采样器设置步进对象时。我已经验证了来自 PMF 的 MAP 估计是合理的,所以我希望它与超参数的初始化方式有关。这是 PMF 模型:
import pymc3 as pm
import numpy as np
import pandas as pd
import theano
import scipy as sp
data = pd.read_csv('jester-dense-subset-100x20.csv')
n, m = data.shape
test_size = m / 10
train_size = m - test_size
train = data.copy()
train.ix[:,train_size:] = np.nan # remove test set data
train[train.isnull()] = train.mean().mean() # mean value imputation
train = train.values
test = data.copy()
test.ix[:,:train_size] = np.nan # remove train set data
test = test.values
# Low precision reflects uncertainty; prevents overfitting
alpha_u = alpha_v = 1/np.var(train)
alpha = np.ones((n,m)) * 2 # fixed precision for likelihood function
dim = 10 # dimensionality
# Specify the model.
with pm.Model() as pmf:
pmf_U = pm.MvNormal('U', mu=0, tau=alpha_u * np.eye(dim),
shape=(n, dim), testval=np.random.randn(n, dim)*.01)
pmf_V = pm.MvNormal('V', mu=0, tau=alpha_v * np.eye(dim),
shape=(m, dim), testval=np.random.randn(m, dim)*.01)
pmf_R = pm.Normal('R', mu=theano.tensor.dot(pmf_U, pmf_V.T),
tau=alpha, observed=train)
# Find mode of posterior using optimization
start = pm.find_MAP(fmin=sp.optimize.fmin_powell)
n, m = data.shape
dim = 10 # dimensionality
beta_0 = 1 # scaling factor for lambdas; unclear on its use
alpha = np.ones((n,m)) * 2 # fixed precision for likelihood function
logging.info('building the BPMF model')
std = .05 # how much noise to use for model initialization
with pm.Model() as bpmf:
# Specify user feature matrix
lambda_u = pm.Wishart(
'lambda_u', n=dim, V=np.eye(dim), shape=(dim, dim),
testval=np.random.randn(dim, dim) * std)
mu_u = pm.Normal(
'mu_u', mu=0, tau=beta_0 * lambda_u, shape=dim,
testval=np.random.randn(dim) * std)
U = pm.MvNormal(
'U', mu=mu_u, tau=lambda_u, shape=(n, dim),
testval=np.random.randn(n, dim) * std)
# Specify item feature matrix
lambda_v = pm.Wishart(
'lambda_v', n=dim, V=np.eye(dim), shape=(dim, dim),
testval=np.random.randn(dim, dim) * std)
mu_v = pm.Normal(
'mu_v', mu=0, tau=beta_0 * lambda_v, shape=dim,
testval=np.random.randn(dim) * std)
V = pm.MvNormal(
'V', mu=mu_v, tau=lambda_v, shape=(m, dim),
testval=np.random.randn(m, dim) * std)
# Specify rating likelihood function
R = pm.Normal(
'R', mu=theano.tensor.dot(U, V.T), tau=alpha,
observed=train)
# `start` is the start dictionary obtained from running find_MAP for PMF.
for key in bpmf.test_point:
if key not in start:
start[key] = bpmf.test_point[key]
with bpmf:
step = pm.NUTS(scaling=start)
PositiveDefiniteError: Scaling is not positive definite. Simple check failed. Diagonal contains negatives. Check indexes [ 0 2 ... 2206 2207 ]
find_MAP
使用具有 BPMF 等超先验的模型。这就是为什么我试图用来自 PMF 的 MAP 值进行初始化,它使用 U 和 V 上的参数的点估计而不是参数化的超先验。
最佳答案
不幸的是,Wishart 发行版不起作用。我最近在这里添加了一个警告:https://github.com/pymc-devs/pymc3/commit/642f63973ec9f807fb6e55a0fc4b31bdfa1f261e
有关此棘手分布的更多讨论,请参见此处:https://github.com/pymc-devs/pymc3/issues/538
您可以通过修复协方差矩阵来确认这是来源。如果是这种情况,我会尝试使用 JKL 先验分布:https://github.com/pymc-devs/pymc3/blob/master/pymc3/examples/LKJ_correlation.py
关于贝叶斯概率矩阵分解 (BPMF) 与 PyMC3 : PositiveDefiniteError using `NUTS` ,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29736966/
我正在尝试在 R 中计算任意 N x J 矩阵 S 的投影矩阵 P: P = S (S'S) ^ -1 S' 我一直在尝试使用以下函数来执行此操作: P 概述 solve 基于一般方阵的 LU 分解
所以我有一个包含数千行的非常旧的文件(我猜是手工生成的),我正试图将它们移动到一个 rdb 中,但是这些行没有转换为列的格式/模式。例如,文件中的行如下所示: blah blahsdfas
这实际上只是一个“最佳实践”问题...... 我发现在开发应用程序时,我经常会得到很多 View 。 将这些 View 分解为几个 View 文件是常见的做法吗?换句话说......而不只是有view
使用以下函数foo()作为简单示例,如果可能的话,我想将...中给出的值分配给两个不同的函数。 foo args(mapply) function (FUN, ..., MoreArgs = NUL
正面案例:可以进入列表 groovy> println GroovySystem.version groovy> final data1 = [[99,2] , [100,4]] groovy> d
省略素数计算方法和因式分解方法的详细信息。 为什么要进行因式分解? 它的应用是什么? 最佳答案 哇,这个线程里有这么多争斗。 具有讽刺意味的是,这个问题有一个主要的有效答案。 因式分解实际上在加密/解
术语“分解不良”和“重构”程序是什么意思?你能举一个简单的例子来理解基本的区别吗? 最佳答案 重构是一种通用技术,可以指代许多任务。它通常意味着清理代码、去除冗余、提高代码质量和可读性。 分解不良代码
我以前有,here ,表明 C++ 函数不容易在汇编中表示。现在我有兴趣以一种或另一种方式阅读它们,因为 Callgrind 是 Valgrind 的一部分,在组装时显示它们已损坏。 所以我想要么破坏
最初,我一直在打开并同时阅读两个文件,内容如下: with open(file1, 'r') as R1: with open(file2, 'r') as R2: ### m
我正在尝试摆脱 标签和标签内的内容使用 beatifulsoup。我去看了文档,似乎是一个非常简单的调用函数。有关该功能的更多信息是 here .这是我到目前为止解析的 html 页面的内容...
给定一个 float ,我想将它分成几个部分的总和,每个部分都有给定的位数。例如,给定 3.1415926535 并要求将其分成以 10 为基数的部分,每部分 4 位数字,它将返回 3.141 + 5
我的 JSF 项目被部署为一个 EAR 文件。它还包括一些 war 文件。我需要 EAR 的分解版本(包括分解的内部 WAR)。 有什么工具可以做到吗? 最佳答案 以编程方式还是手动? EAR 和 W
以下函数不使用行透视进行 LU 分解。 R 中是否有一个现有的函数可以使用行数据进行 LU 分解? > require(Matrix) > expand(lu(matrix(rnorm(16),4,4
关闭。这个问题是opinion-based .它目前不接受答案。 想改进这个问题?更新问题,以便 editing this post 提供事实和引用来回答它. 7年前关闭。 Improve this
我正在使用登记数据进行病假研究。从登记册上,我只得到了每个人的病假开始日期和结束日期。但日期并没有逐年分割。例如,对于人 A,只有开始日期 (1-may-2016) 和结束日期 (14-feb-201
我发现以下 R 代码使用 qr 因式分解无法恢复原始矩阵。我不明白为什么。 a <- matrix(runif(180),ncol=6) a[,c(2,4)] <- 0 b <- qr(a) d <-
我正在尝试检测气候数据时间序列中的异常值,其中一些缺失的观测值。在网上搜索我发现了许多可用的方法。其中,STL 分解似乎很有吸引力,因为它去除了趋势和季节性成分并研究了其余部分。阅读 STL: A S
我想使用 javascript 分解数组中的 VIN,可能使用正则表达式,然后使用某种循环... 以下是读取 VIN 的方法: http://forum.cardekho.com/topic/600-
我正在研究 Databricks 示例。数据框的架构如下所示: > parquetDF.printSchema root |-- department: struct (nullable = true
我正在尝试简化我的代码并将其分解为多个文件。例如,我设法做到了: socket.once("disconnect", disconnectSocket); 然后有一个名为 disconnectSock
我是一名优秀的程序员,十分优秀!