gpt4 book ai didi

math - 实现等高线绘图的方法

转载 作者:行者123 更新时间:2023-12-04 19:57:09 28 4
gpt4 key购买 nike

我需要实现一个等高线绘图算法(而不是只使用一个)。输入是一个(连续)函数 f: R^2 -> R(该函数是在整个域上定义的,而不仅仅是针对某些输入)。输出应为向量形式,即一组样条或线段。

我正在寻找有关如何实现这一点的建议,最好以(科学)论文的形式。

我发现了一些对 80 年代开发的算法的引用(“级别跟踪算法”)。在过去的 30 年里,这方面有什么发展吗?用于解决此问题的标准方法是什么?

该算法将用于实时可视化,因此它需要速度快,同时仍能产生不错的结果。

(小型、自包含且经过良好测试的 C/C++ 实现也将受到欢迎。)

最佳答案

我记得 TI-89 计算器使用了一个非常简单的方案,如下所示:

  • 制作网格,试验网格尺寸
  • 在网格的每个顶点计算你的函数
  • 对于每个方块,如果有两个不同符号的 f 值,那么里面就有一些有趣的东西。假设情况如下:
  • 对于正方形的每个“有趣”边(f 在端点处具有不同的符号),通过二等分(如果预算不足,则通过线性插值)找到 f 的零。可能有两个或四个有趣的方面。
  • 如果有两个有趣的边,在零点之间画一条直线。
  • 如果有四个有趣的边,画一个十字。

  • 现在,您可能想要自适应地细化有趣的方块。 TI-89 有一个该死的小屏幕(160x120),这没有必要。完全相同的方法可以在一个有趣的正方形内使用。

    关于math - 实现等高线绘图的方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/4313992/

    28 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com