- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一些数据如下所示:
cusip date start_date end_date
1 00036020 2011-01-31 2011-07-29 2012-06-30
2 00036020 2011-02-28 2011-07-29 2012-06-30
3 00036020 2011-03-31 2011-07-29 2012-06-30
4 00036020 2011-04-29 2011-07-29 2012-06-30
5 00036020 2011-05-31 2011-07-29 2012-06-30
6 00036020 2011-06-30 2011-07-29 2012-06-30
我想对 group_by
列进行 id
并计算 start_date
和 end_date
之间的月底日期。或者在 start_date
和 end_date
之间创建一系列每月日期,我可以将 date
列与之匹配。
我基本上想将分组数据过滤到开始日期和结束日期之间,只是执行 filter(date >= start_date & date <= end_date)
并不能得到结果。
执行以下操作:
group_by(cusip, start_date, end_date) %>%
filter(date >= start_date & date <= end_date)
返回:
> head(df2, 13)
# A tibble: 13 x 4
# Groups: cusip, start_date, end_date [3]
cusip date start_date end_date
<chr> <date> <date> <date>
1 00036020 2011-07-29 2011-07-29 2012-06-30
2 00036020 2011-08-31 2011-07-29 2012-06-30
3 00036020 2011-09-30 2011-07-29 2012-06-30
4 00036020 2011-10-31 2011-07-29 2012-06-30
5 00036020 2011-11-30 2011-07-29 2012-06-30
6 00036020 2011-12-30 2011-07-29 2012-06-30
7 00036020 2012-07-31 2012-07-31 2013-06-30
8 00036020 2012-08-31 2012-07-31 2013-06-30
9 00036020 2012-09-28 2012-07-31 2013-06-30
10 00036020 2012-10-31 2012-07-31 2013-06-30
11 00036020 2012-11-30 2012-07-31 2013-06-30
12 00036020 2012-12-31 2012-07-31 2013-06-30
13 00036020 2013-07-31 2013-07-31 2014-06-30
这也不是我想要的结果。从第 6/7 行开始,我丢失了 6 个月的数据。
我有一个比这大得多的数据框,我想将数据过滤到 date
和 start_date
之间的 end_date
列之间。
只是在想我该怎么做。
数据:
df <- structure(list(cusip = c("00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110"), date = structure(c(15005,
15033, 15064, 15093, 15125, 15155, 15184, 15217, 15247, 15278,
15308, 15338, 15370, 15399, 15429, 15460, 15491, 15520, 15552,
15583, 15611, 15644, 15674, 15705, 15736, 15764, 15792, 15825,
15856, 15884, 15917, 15947, 15978, 16009, 16038, 16070, 16101,
16129, 16160, 16190, 16220, 16251, 16282, 16311, 16343, 16374,
16402, 16435, 16465, 16493, 16525, 16555, 16584, 16616, 16647,
16678, 16708, 16738, 16769, 16800, 16829, 16829, 16860, 16860,
16891, 16891, 16920, 16920, 16952, 16952, 16982, 16982, 17011,
17011, 17044, 17044, 17074, 17074, 17105, 17105, 17135, 17135,
17165, 17165, 17197, 17225, 17256, 17284, 17317, 17347, 17378,
17409, 17438, 17470, 17500, 17529, 17562, 17590, 17619, 17651,
17682, 17711, 17743, 17774, 17802, 17835, 17865, 17896, 12814,
12842, 12873, 12902, 12934, 12964, 12993, 13026, 13056, 13087,
13117, 13147, 13179, 13207, 13238, 13266, 13299, 13329, 13360,
13391, 13420, 13452, 13482, 13511, 13544, 13572, 13602, 13633,
13664, 13693, 13725, 13756, 13784, 13817, 13847, 13878, 13909,
13938, 13969, 13999, 14029, 14060, 14091, 14120, 14152, 14183,
14211, 14244, 14274, 14302, 14334, 14364, 14393, 14425, 14456,
14487, 14517, 14547, 14578, 14609, 14638, 14666, 14699, 14729,
14757, 14790, 14820, 14852, 14882, 14911, 14943, 14974, 15005,
15033, 15064, 15093, 15125, 15155, 15184, 15217, 15247, 15278,
15308, 15338, 15370, 15399, 15429, 15460, 15491, 15520, 15552,
15583, 15611, 15644, 15674, 15705, 15736, 15764, 15792, 15825,
15856, 15884, 15917, 15947, 15978, 16009, 16038, 16070, 16101,
16129, 16160, 16190, 16220, 16251, 16282, 16311, 16343, 16374,
16402, 16435, 16465, 16493, 16525, 16555, 16584, 16616, 16647,
16678, 16708, 16738, 16769, 16800, 16829, 16860, 16891, 16920,
16952, 16982, 17011, 17044, 17074, 17105, 17135, 17165, 17197,
17225, 17256, 17284, 17317, 17347, 17378, 17409, 17438, 17470,
17500, 17529), class = "Date"), start_date = structure(c(15184,
15184, 15184, 15184, 15184, 15184, 15184, 15184, 15184, 15184,
15184, 15184, 15552, 15552, 15552, 15552, 15552, 15552, 15552,
15552, 15552, 15552, 15552, 15552, 15917, 15917, 15917, 15917,
15917, 15917, 15917, 15917, 15917, 15917, 15917, 15917, 16282,
16282, 16282, 16282, 16282, 16282, 16282, 16282, 16282, 16282,
16282, 16282, 16647, 16647, 16647, 16647, 16647, 16647, 16647,
16647, 16647, 16647, 16647, 16647, 17011, 17011, 17011, 17011,
17011, 17011, 17011, 17011, 17011, 17011, 17011, 17011, 17011,
17011, 17011, 17011, 17011, 17011, 17011, 17011, 17011, 17011,
17011, 17011, 17378, 17378, 17378, 17378, 17378, 17378, 17378,
17378, 17378, 17378, 17378, 17378, 17743, 17743, 17743, 17743,
17743, 17743, 17743, 17743, 17743, 17743, 17743, 17743, 13360,
13360, 13360, 13360, 13360, 13360, 13360, 13360, 13360, 13360,
13360, 13360, 13725, 13725, 13725, 13725, 13725, 13725, 13725,
13725, 13725, 13725, 13725, 13725, 14091, 14091, 14091, 14091,
14091, 14091, 14091, 14091, 14091, 14091, 14091, 14091, 14456,
14456, 14456, 14456, 14456, 14456, 14456, 14456, 14456, 14456,
14456, 14456, 14820, 14820, 14820, 14820, 14820, 14820, 14820,
14820, 14820, 14820, 14820, 14820, 15184, 15184, 15184, 15184,
15184, 15184, 15184, 15184, 15184, 15184, 15184, 15184, 15552,
15552, 15552, 15552, 15552, 15552, 15552, 15552, 15552, 15552,
15552, 15552, 15917, 15917, 15917, 15917, 15917, 15917, 15917,
15917, 15917, 15917, 15917, 15917, 16282, 16282, 16282, 16282,
16282, 16282, 16282, 16282, 16282, 16282, 16282, 16282, 16647,
16647, 16647, 16647, 16647, 16647, 16647, 16647, 16647, 16647,
16647, 16647, 17011, 17011, 17011, 17011, 17011, 17011, 17011,
17011, 17011, 17011, 17011, 17011, 17378, 17378, 17378, 17378,
17378, 17378, 17378, 17378, 17378, 17378, 17378, 17378, 17743,
17743, 17743, 17743, 17743, 17743, 17743, 17743, 17743, 17743,
17743, 17743), class = "Date"), end_date = structure(c(15521,
15521, 15521, 15521, 15521, 15521, 15521, 15521, 15521, 15521,
15521, 15521, 15886, 15886, 15886, 15886, 15886, 15886, 15886,
15886, 15886, 15886, 15886, 15886, 16251, 16251, 16251, 16251,
16251, 16251, 16251, 16251, 16251, 16251, 16251, 16251, 16616,
16616, 16616, 16616, 16616, 16616, 16616, 16616, 16616, 16616,
16616, 16616, 16982, 16982, 16982, 16982, 16982, 16982, 16982,
16982, 16982, 16982, 16982, 16982, 17347, 17347, 17347, 17347,
17347, 17347, 17347, 17347, 17347, 17347, 17347, 17347, 17347,
17347, 17347, 17347, 17347, 17347, 17347, 17347, 17347, 17347,
17347, 17347, 17712, 17712, 17712, 17712, 17712, 17712, 17712,
17712, 17712, 17712, 17712, 17712, 18077, 18077, 18077, 18077,
18077, 18077, 18077, 18077, 18077, 18077, 18077, 18077, 13694,
13694, 13694, 13694, 13694, 13694, 13694, 13694, 13694, 13694,
13694, 13694, 14060, 14060, 14060, 14060, 14060, 14060, 14060,
14060, 14060, 14060, 14060, 14060, 14425, 14425, 14425, 14425,
14425, 14425, 14425, 14425, 14425, 14425, 14425, 14425, 14790,
14790, 14790, 14790, 14790, 14790, 14790, 14790, 14790, 14790,
14790, 14790, 15155, 15155, 15155, 15155, 15155, 15155, 15155,
15155, 15155, 15155, 15155, 15155, 15521, 15521, 15521, 15521,
15521, 15521, 15521, 15521, 15521, 15521, 15521, 15521, 15886,
15886, 15886, 15886, 15886, 15886, 15886, 15886, 15886, 15886,
15886, 15886, 16251, 16251, 16251, 16251, 16251, 16251, 16251,
16251, 16251, 16251, 16251, 16251, 16616, 16616, 16616, 16616,
16616, 16616, 16616, 16616, 16616, 16616, 16616, 16616, 16982,
16982, 16982, 16982, 16982, 16982, 16982, 16982, 16982, 16982,
16982, 16982, 17347, 17347, 17347, 17347, 17347, 17347, 17347,
17347, 17347, 17347, 17347, 17347, 17712, 17712, 17712, 17712,
17712, 17712, 17712, 17712, 17712, 17712, 17712, 17712, 18077,
18077, 18077, 18077, 18077, 18077, 18077, 18077, 18077, 18077,
18077, 18077), class = "Date")), row.names = c(NA, -264L), class = "data.frame")
编辑:预期输出:
预期的输出基本上是“复制”date
列。所以创建一个日期序列如下:
前 24 个观察值:
第一个序列是从 2011-07-29
到 2012-06-30
,因此将从第 7 行开始(所有带有 ** 的行将被丢弃),因为它们小于 start_date
。该序列应持续 12 个月 seq(from = as.Date("2011-07-29"), to = as.Date("2012-06-30"), by = "months")
在第 18 行结束。新序列从第 19 行开始,因为 start_date
是 2012-07-31
。
cusip date start_date end_date
** 1 00036020 2011-01-31 2011-07-29 2012-06-30
** 2 00036020 2011-02-28 2011-07-29 2012-06-30
** 3 00036020 2011-03-31 2011-07-29 2012-06-30
** 4 00036020 2011-04-29 2011-07-29 2012-06-30
** 5 00036020 2011-05-31 2011-07-29 2012-06-30
** 6 00036020 2011-06-30 2011-07-29 2012-06-30
7 00036020 2011-07-29 2011-07-29 2012-06-30
8 00036020 2011-08-31 2011-07-29 2012-06-30
9 00036020 2011-09-30 2011-07-29 2012-06-30
10 00036020 2011-10-31 2011-07-29 2012-06-30
11 00036020 2011-11-30 2011-07-29 2012-06-30
12 00036020 2011-12-30 2011-07-29 2012-06-30
13 00036020 2012-01-31 2012-07-31 2013-06-30
14 00036020 2012-02-29 2012-07-31 2013-06-30
15 00036020 2012-03-30 2012-07-31 2013-06-30
16 00036020 2012-04-30 2012-07-31 2013-06-30
17 00036020 2012-05-31 2012-07-31 2013-06-30
18 00036020 2012-06-29 2012-07-31 2013-06-30
19 00036020 2012-07-31 2012-07-31 2013-06-30
20 00036020 2012-08-31 2012-07-31 2013-06-30
21 00036020 2012-09-28 2012-07-31 2013-06-30
22 00036020 2012-10-31 2012-07-31 2013-06-30
23 00036020 2012-11-30 2012-07-31 2013-06-30
24 00036020 2012-12-31 2012-07-31 2013-06-30
我在想我应该让 start_date
和 end_date
成为唯一值并从那里过滤。
最佳答案
如果我们需要为每个“start_date”及其相应的“end_date”创建一个日期序列,可以使用 map2
完成,这里它不需要任何分组,因为它获得了每个相应的“开始日期/结束日期”的序列
library(purrr)
df %>%
mutate(Seq = map2(start_date, end_date, seq, by = '1 day'))
基于OP的评论
df %>%
group_by(cusip) %>%
mutate(rn = row_number()) %>%
filter(cummax(date >= start_date & date <= end_date) > 0)
# A tibble: 102 x 5
# Groups: cusip [1]
# cusip date start_date end_date rn
# <chr> <date> <date> <date> <int>
# 1 00036020 2011-07-29 2011-07-29 2012-06-30 7
# 2 00036020 2011-08-31 2011-07-29 2012-06-30 8
# 3 00036020 2011-09-30 2011-07-29 2012-06-30 9
# 4 00036020 2011-10-31 2011-07-29 2012-06-30 10
# 5 00036020 2011-11-30 2011-07-29 2012-06-30 11
# 6 00036020 2011-12-30 2011-07-29 2012-06-30 12
# 7 00036020 2012-01-31 2012-07-31 2013-06-30 13
# 8 00036020 2012-02-29 2012-07-31 2013-06-30 14
# 9 00036020 2012-03-30 2012-07-31 2013-06-30 15
#10 00036020 2012-04-30 2012-07-31 2013-06-30 16
# … with 92 more rows
-检查前 24 行
关于r - group_by 并创建一系列每月日期,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58050764/
前言: 有时候,一个数据库有多个帐号,包括数据库管理员,开发人员,运维支撑人员等,可能有很多帐号都有比较大的权限,例如DDL操作权限(创建,修改,删除存储过程,创建,修改,删除表等),账户多了,管理
所以我用 Create React App 创建并设置了一个大型 React 应用程序。最近我们开始使用 Storybook 来处理和创建组件。它很棒。但是,当我们尝试运行或构建应用程序时,我们不断遇
遵循我正在创建的控件的代码片段。这个控件用在不同的地方,变量也不同。 我正在尝试编写指令来清理代码,但在 {{}} 附近插入值时出现解析错误。 刚接触 Angular ,无法确定我错过了什么。请帮忙。
我正在尝试创建一个 image/jpeg jax-rs 提供程序类,它为我的基于 post rest 的 Web 服务创建一个图像。我无法制定请求来测试以下内容,最简单的测试方法是什么? @POST
我一直在 Windows 10 的模拟器中练习 c。后来我改用dev C++ IDE。当我在 C 中使用 FILE 时。创建的文件的名称为 test.txt ,而我给出了其他名称。请帮助解决它。 下面
当我们创建自定义 View 时,我们将 View 文件的所有者设置为自定义类,并使用 initWithFrame 或 initWithCode 对其进行实例化。 当我们创建 customUITable
我正在尝试为函数 * Producer 创建一个线程,但用于创建线程的行显示错误。我为这句话加了星标,但我无法弄清楚它出了什么问题...... #include #include #include
今天在做项目时,遇到了需要创建JavaScript对象的情况。所以Bing了一篇老外写的关于3种创建JavaScript对象的文章,看后跟着打了一遍代码。感觉方法挺好的,在这里与大家分享一下。 &
我正在阅读将查询字符串传递给 Amazon 的 S3 以进行身份验证的文档,但似乎无法理解 StringToSign 的创建和使用方式。我正在寻找一个具体示例来说明 (1) 如何构造 String
前言:我对 C# 中任务的底层实现不太了解,只了解它们的用法。为我在下面屠宰的任何东西道歉: 对于“我怎样才能开始一项任务但不等待它?”这个问题,我找不到一个好的答案。在 C# 中。更具体地说,即使任
我有一个由一些复杂的表达式生成的 ILookup。假设这是按姓氏查找人。 (在我们简单的世界模型中,姓氏在家庭中是唯一的) ILookup families; 现在我有两个对如何构建感兴趣的查询。 首
我试图创建一个 MSI,其中包含 和 exe。在 WIX 中使用了捆绑选项。这样做时出错。有人可以帮我解决这个问题。下面是代码: 错误 error LGH
在 Yii 中,Create 和 Update 通常使用相同的形式。因此,如果我在创建期间有电子邮件、密码、...other_fields...等字段,但我不想在更新期间专门显示电子邮件和密码字段,但
上周我一直在努力创建一个给定一行和一列的 QModelIndex。 或者,我会满足于在已经存在的 QModelIndex 中更改 row() 的值。 任何帮助,将不胜感激。 编辑: QModelInd
出于某种原因,这不起作用: const char * str_reset_command = "\r\nReset"; const char * str_config_command = "\r\nC
现在,我有以下由 original.df %.% group_by(Category) %.% tally() %.% arrange(desc(n)) 创建的 data.frame。 DF 5),
在今天之前,我使用/etc/vim/vimrc来配置我的vim设置。今天,我想到了创建.vimrc文件。所以,我用 touch .vimrc cat /etc/vim/vimrc > .vimrc 所
我可以创建一个 MKAnnotation,还是只读的?我有坐标,但我发现使用 setCooperative 手动创建 MKAnnotation 并不容易。 想法? 最佳答案 MKAnnotation
在以下代码中,第一个日志语句按预期显示小数,但第二个日志语句记录 NULL。我做错了什么? NSDictionary *entry = [[NSDictionary alloc] initWithOb
我正在使用与此类似的代码动态添加到数组; $arrayF[$f+1][$y][$x+1] = $value+1; 但是我在错误报告中收到了这个: undefined offset :1 问题:尝试创
我是一名优秀的程序员,十分优秀!