- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一些数据如下所示:
cusip date start_date end_date
1 00036020 2011-01-31 2011-07-29 2012-06-30
2 00036020 2011-02-28 2011-07-29 2012-06-30
3 00036020 2011-03-31 2011-07-29 2012-06-30
4 00036020 2011-04-29 2011-07-29 2012-06-30
5 00036020 2011-05-31 2011-07-29 2012-06-30
6 00036020 2011-06-30 2011-07-29 2012-06-30
我想对 group_by
列进行 id
并计算 start_date
和 end_date
之间的月底日期。或者在 start_date
和 end_date
之间创建一系列每月日期,我可以将 date
列与之匹配。
我基本上想将分组数据过滤到开始日期和结束日期之间,只是执行 filter(date >= start_date & date <= end_date)
并不能得到结果。
执行以下操作:
group_by(cusip, start_date, end_date) %>%
filter(date >= start_date & date <= end_date)
返回:
> head(df2, 13)
# A tibble: 13 x 4
# Groups: cusip, start_date, end_date [3]
cusip date start_date end_date
<chr> <date> <date> <date>
1 00036020 2011-07-29 2011-07-29 2012-06-30
2 00036020 2011-08-31 2011-07-29 2012-06-30
3 00036020 2011-09-30 2011-07-29 2012-06-30
4 00036020 2011-10-31 2011-07-29 2012-06-30
5 00036020 2011-11-30 2011-07-29 2012-06-30
6 00036020 2011-12-30 2011-07-29 2012-06-30
7 00036020 2012-07-31 2012-07-31 2013-06-30
8 00036020 2012-08-31 2012-07-31 2013-06-30
9 00036020 2012-09-28 2012-07-31 2013-06-30
10 00036020 2012-10-31 2012-07-31 2013-06-30
11 00036020 2012-11-30 2012-07-31 2013-06-30
12 00036020 2012-12-31 2012-07-31 2013-06-30
13 00036020 2013-07-31 2013-07-31 2014-06-30
这也不是我想要的结果。从第 6/7 行开始,我丢失了 6 个月的数据。
我有一个比这大得多的数据框,我想将数据过滤到 date
和 start_date
之间的 end_date
列之间。
只是在想我该怎么做。
数据:
df <- structure(list(cusip = c("00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036020", "00036020", "00036020",
"00036020", "00036020", "00036020", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110", "00036110", "00036110", "00036110",
"00036110", "00036110", "00036110"), date = structure(c(15005,
15033, 15064, 15093, 15125, 15155, 15184, 15217, 15247, 15278,
15308, 15338, 15370, 15399, 15429, 15460, 15491, 15520, 15552,
15583, 15611, 15644, 15674, 15705, 15736, 15764, 15792, 15825,
15856, 15884, 15917, 15947, 15978, 16009, 16038, 16070, 16101,
16129, 16160, 16190, 16220, 16251, 16282, 16311, 16343, 16374,
16402, 16435, 16465, 16493, 16525, 16555, 16584, 16616, 16647,
16678, 16708, 16738, 16769, 16800, 16829, 16829, 16860, 16860,
16891, 16891, 16920, 16920, 16952, 16952, 16982, 16982, 17011,
17011, 17044, 17044, 17074, 17074, 17105, 17105, 17135, 17135,
17165, 17165, 17197, 17225, 17256, 17284, 17317, 17347, 17378,
17409, 17438, 17470, 17500, 17529, 17562, 17590, 17619, 17651,
17682, 17711, 17743, 17774, 17802, 17835, 17865, 17896, 12814,
12842, 12873, 12902, 12934, 12964, 12993, 13026, 13056, 13087,
13117, 13147, 13179, 13207, 13238, 13266, 13299, 13329, 13360,
13391, 13420, 13452, 13482, 13511, 13544, 13572, 13602, 13633,
13664, 13693, 13725, 13756, 13784, 13817, 13847, 13878, 13909,
13938, 13969, 13999, 14029, 14060, 14091, 14120, 14152, 14183,
14211, 14244, 14274, 14302, 14334, 14364, 14393, 14425, 14456,
14487, 14517, 14547, 14578, 14609, 14638, 14666, 14699, 14729,
14757, 14790, 14820, 14852, 14882, 14911, 14943, 14974, 15005,
15033, 15064, 15093, 15125, 15155, 15184, 15217, 15247, 15278,
15308, 15338, 15370, 15399, 15429, 15460, 15491, 15520, 15552,
15583, 15611, 15644, 15674, 15705, 15736, 15764, 15792, 15825,
15856, 15884, 15917, 15947, 15978, 16009, 16038, 16070, 16101,
16129, 16160, 16190, 16220, 16251, 16282, 16311, 16343, 16374,
16402, 16435, 16465, 16493, 16525, 16555, 16584, 16616, 16647,
16678, 16708, 16738, 16769, 16800, 16829, 16860, 16891, 16920,
16952, 16982, 17011, 17044, 17074, 17105, 17135, 17165, 17197,
17225, 17256, 17284, 17317, 17347, 17378, 17409, 17438, 17470,
17500, 17529), class = "Date"), start_date = structure(c(15184,
15184, 15184, 15184, 15184, 15184, 15184, 15184, 15184, 15184,
15184, 15184, 15552, 15552, 15552, 15552, 15552, 15552, 15552,
15552, 15552, 15552, 15552, 15552, 15917, 15917, 15917, 15917,
15917, 15917, 15917, 15917, 15917, 15917, 15917, 15917, 16282,
16282, 16282, 16282, 16282, 16282, 16282, 16282, 16282, 16282,
16282, 16282, 16647, 16647, 16647, 16647, 16647, 16647, 16647,
16647, 16647, 16647, 16647, 16647, 17011, 17011, 17011, 17011,
17011, 17011, 17011, 17011, 17011, 17011, 17011, 17011, 17011,
17011, 17011, 17011, 17011, 17011, 17011, 17011, 17011, 17011,
17011, 17011, 17378, 17378, 17378, 17378, 17378, 17378, 17378,
17378, 17378, 17378, 17378, 17378, 17743, 17743, 17743, 17743,
17743, 17743, 17743, 17743, 17743, 17743, 17743, 17743, 13360,
13360, 13360, 13360, 13360, 13360, 13360, 13360, 13360, 13360,
13360, 13360, 13725, 13725, 13725, 13725, 13725, 13725, 13725,
13725, 13725, 13725, 13725, 13725, 14091, 14091, 14091, 14091,
14091, 14091, 14091, 14091, 14091, 14091, 14091, 14091, 14456,
14456, 14456, 14456, 14456, 14456, 14456, 14456, 14456, 14456,
14456, 14456, 14820, 14820, 14820, 14820, 14820, 14820, 14820,
14820, 14820, 14820, 14820, 14820, 15184, 15184, 15184, 15184,
15184, 15184, 15184, 15184, 15184, 15184, 15184, 15184, 15552,
15552, 15552, 15552, 15552, 15552, 15552, 15552, 15552, 15552,
15552, 15552, 15917, 15917, 15917, 15917, 15917, 15917, 15917,
15917, 15917, 15917, 15917, 15917, 16282, 16282, 16282, 16282,
16282, 16282, 16282, 16282, 16282, 16282, 16282, 16282, 16647,
16647, 16647, 16647, 16647, 16647, 16647, 16647, 16647, 16647,
16647, 16647, 17011, 17011, 17011, 17011, 17011, 17011, 17011,
17011, 17011, 17011, 17011, 17011, 17378, 17378, 17378, 17378,
17378, 17378, 17378, 17378, 17378, 17378, 17378, 17378, 17743,
17743, 17743, 17743, 17743, 17743, 17743, 17743, 17743, 17743,
17743, 17743), class = "Date"), end_date = structure(c(15521,
15521, 15521, 15521, 15521, 15521, 15521, 15521, 15521, 15521,
15521, 15521, 15886, 15886, 15886, 15886, 15886, 15886, 15886,
15886, 15886, 15886, 15886, 15886, 16251, 16251, 16251, 16251,
16251, 16251, 16251, 16251, 16251, 16251, 16251, 16251, 16616,
16616, 16616, 16616, 16616, 16616, 16616, 16616, 16616, 16616,
16616, 16616, 16982, 16982, 16982, 16982, 16982, 16982, 16982,
16982, 16982, 16982, 16982, 16982, 17347, 17347, 17347, 17347,
17347, 17347, 17347, 17347, 17347, 17347, 17347, 17347, 17347,
17347, 17347, 17347, 17347, 17347, 17347, 17347, 17347, 17347,
17347, 17347, 17712, 17712, 17712, 17712, 17712, 17712, 17712,
17712, 17712, 17712, 17712, 17712, 18077, 18077, 18077, 18077,
18077, 18077, 18077, 18077, 18077, 18077, 18077, 18077, 13694,
13694, 13694, 13694, 13694, 13694, 13694, 13694, 13694, 13694,
13694, 13694, 14060, 14060, 14060, 14060, 14060, 14060, 14060,
14060, 14060, 14060, 14060, 14060, 14425, 14425, 14425, 14425,
14425, 14425, 14425, 14425, 14425, 14425, 14425, 14425, 14790,
14790, 14790, 14790, 14790, 14790, 14790, 14790, 14790, 14790,
14790, 14790, 15155, 15155, 15155, 15155, 15155, 15155, 15155,
15155, 15155, 15155, 15155, 15155, 15521, 15521, 15521, 15521,
15521, 15521, 15521, 15521, 15521, 15521, 15521, 15521, 15886,
15886, 15886, 15886, 15886, 15886, 15886, 15886, 15886, 15886,
15886, 15886, 16251, 16251, 16251, 16251, 16251, 16251, 16251,
16251, 16251, 16251, 16251, 16251, 16616, 16616, 16616, 16616,
16616, 16616, 16616, 16616, 16616, 16616, 16616, 16616, 16982,
16982, 16982, 16982, 16982, 16982, 16982, 16982, 16982, 16982,
16982, 16982, 17347, 17347, 17347, 17347, 17347, 17347, 17347,
17347, 17347, 17347, 17347, 17347, 17712, 17712, 17712, 17712,
17712, 17712, 17712, 17712, 17712, 17712, 17712, 17712, 18077,
18077, 18077, 18077, 18077, 18077, 18077, 18077, 18077, 18077,
18077, 18077), class = "Date")), row.names = c(NA, -264L), class = "data.frame")
编辑:预期输出:
预期的输出基本上是“复制”date
列。所以创建一个日期序列如下:
前 24 个观察值:
第一个序列是从 2011-07-29
到 2012-06-30
,因此将从第 7 行开始(所有带有 ** 的行将被丢弃),因为它们小于 start_date
。该序列应持续 12 个月 seq(from = as.Date("2011-07-29"), to = as.Date("2012-06-30"), by = "months")
在第 18 行结束。新序列从第 19 行开始,因为 start_date
是 2012-07-31
。
cusip date start_date end_date
** 1 00036020 2011-01-31 2011-07-29 2012-06-30
** 2 00036020 2011-02-28 2011-07-29 2012-06-30
** 3 00036020 2011-03-31 2011-07-29 2012-06-30
** 4 00036020 2011-04-29 2011-07-29 2012-06-30
** 5 00036020 2011-05-31 2011-07-29 2012-06-30
** 6 00036020 2011-06-30 2011-07-29 2012-06-30
7 00036020 2011-07-29 2011-07-29 2012-06-30
8 00036020 2011-08-31 2011-07-29 2012-06-30
9 00036020 2011-09-30 2011-07-29 2012-06-30
10 00036020 2011-10-31 2011-07-29 2012-06-30
11 00036020 2011-11-30 2011-07-29 2012-06-30
12 00036020 2011-12-30 2011-07-29 2012-06-30
13 00036020 2012-01-31 2012-07-31 2013-06-30
14 00036020 2012-02-29 2012-07-31 2013-06-30
15 00036020 2012-03-30 2012-07-31 2013-06-30
16 00036020 2012-04-30 2012-07-31 2013-06-30
17 00036020 2012-05-31 2012-07-31 2013-06-30
18 00036020 2012-06-29 2012-07-31 2013-06-30
19 00036020 2012-07-31 2012-07-31 2013-06-30
20 00036020 2012-08-31 2012-07-31 2013-06-30
21 00036020 2012-09-28 2012-07-31 2013-06-30
22 00036020 2012-10-31 2012-07-31 2013-06-30
23 00036020 2012-11-30 2012-07-31 2013-06-30
24 00036020 2012-12-31 2012-07-31 2013-06-30
我在想我应该让 start_date
和 end_date
成为唯一值并从那里过滤。
最佳答案
如果我们需要为每个“start_date”及其相应的“end_date”创建一个日期序列,可以使用 map2
完成,这里它不需要任何分组,因为它获得了每个相应的“开始日期/结束日期”的序列
library(purrr)
df %>%
mutate(Seq = map2(start_date, end_date, seq, by = '1 day'))
基于OP的评论
df %>%
group_by(cusip) %>%
mutate(rn = row_number()) %>%
filter(cummax(date >= start_date & date <= end_date) > 0)
# A tibble: 102 x 5
# Groups: cusip [1]
# cusip date start_date end_date rn
# <chr> <date> <date> <date> <int>
# 1 00036020 2011-07-29 2011-07-29 2012-06-30 7
# 2 00036020 2011-08-31 2011-07-29 2012-06-30 8
# 3 00036020 2011-09-30 2011-07-29 2012-06-30 9
# 4 00036020 2011-10-31 2011-07-29 2012-06-30 10
# 5 00036020 2011-11-30 2011-07-29 2012-06-30 11
# 6 00036020 2011-12-30 2011-07-29 2012-06-30 12
# 7 00036020 2012-01-31 2012-07-31 2013-06-30 13
# 8 00036020 2012-02-29 2012-07-31 2013-06-30 14
# 9 00036020 2012-03-30 2012-07-31 2013-06-30 15
#10 00036020 2012-04-30 2012-07-31 2013-06-30 16
# … with 92 more rows
-检查前 24 行
关于r - group_by 并创建一系列每月日期,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58050764/
我的数据库中有两张表,一张用于 field ,另一张用于预订。我需要的是一个查询来选择所有未预订的 field 。见下文: 餐 table 预订具有以下字段: bk_id venue_id 作为(预订
嗨,我是编码新手,我有一些培训项目,其中包括从 HTML 表单输入 MySQL 数据库。它就像你玩过的游戏的日志。第一个日期输入是您开始游戏的时间,第二个日期输入是您完成游戏的时间。但我需要检查器或类
我是这个 sql 编码的新手,我正在尝试学习新的东西。因此,我创建了一个交货表,其中包含一些属性,如商品代码、交货日期、交货数量。所以如何从同一张表中获取第一个交货日期(最小日期)和交货数量以及最晚交
我从支付网关返回了这个日期 2014-05-15T08:40:52+01:00 我得到 2014-05-15T08:40:52 但我无法识别时区 +01:00 的含义 我的位置时区是 UTC−06:0
我快要疯了,请帮忙。 我有一列包含日期时间值。 我需要找到每天的最小值和最大值。 数据看起来像这样 2012-11-23 05:49:26.000 2012-11-23 07:55:43.000
我从 json 数据中获取日期为 2015 年 4 月 15 日晚上 10:15我只想在 html 页面中显示 json 响应数据的时间,例如 10:15 PM这里我放了我的js函数和html代码 J
是否有 javascript 库或其他机制允许我将 .NET 日期/时间格式字符串(即 yyyy-MM-dd HH:mm:ss)传递给 javascript函数并让它相应地解析提供的日期时间值?我一直
我正在使用以下代码以正确的格式获取当前的 UTC 时间,但客户返回并要求时间戳现在使用 EST 而不是 UTC。我搜索了 Google 和 stackoverflow,但找不到适用于我现有代码的答案。
我有以下日期的平均温度数据。我想找到连续至少 5 天低于或高于 0 摄氏度的开始日期。 date_short mean.temp 1 2018-05-18 17.54 2 2018-05-19
它可以在其他网络浏览器中使用,但 IE11 返回无效日期。 为了调试我使用了下面的代码。 console.log('before - ' + date.value); date.value = new
我在 Excel 中有一个数据的 Web 提取,其中日期列带有/Date(1388624400000)/。我需要在 Excel 中将其转换为日期。 最佳答案 能够从 here 中推断出它. 假设字符串
嗨,我的 Schmema 有一个带有 ISO 日期的字段: ISODate("2015-04-30T14:47:46.501Z") Paypal 在成功付款后以该形式返回日期对象: Time/Date
我的 table : CREATE TABLE `tbdata` ( `ID` INT(10) NOT NULL AUTO_INCREMENT, `PatientID` INT(10) NOT
我正在 Ubuntu 服务器 12.04 中编写一个 shell 脚本,它应该比较日志文件中的一些数据。在日志文件中,日期以以下格式给出: [Mon Apr 08 15:02:54 2013] 如您所
我想使用 GROUP BY WITH ROLLUP 创建一个表并获取总行数而不是 null。 $sql ="SELECT IF(YEAR(transaktioner.datum
我正在创建博客文章,在成功迁移我的博客文件后,当我转到我网站的博客页面时返回一个错误(无法解析其余部分:':“Ymd”'来自'post.date|date: "Ymd"') 我似乎无法确定这是语法错误
我正在尝试获取要插入到 CAML 查询中的月份范围,即:2010-09-01 和 2010-09-30。 我使用以下代码生成这两个值: var month = "10/2010"; var month
如何将代码document.write("直到指定日期")更改为writeMessage(date)中的日期?此外,writeMessage(date) 中的日期未正确显示(仅显示年份)。感谢您帮助解
我在 Windows (XP) 和 Linux 上都尝试过 utime()。在 Windows 上我得到一个 EACCES 错误,在 Linux 上我没有得到任何错误(但时间没有改变)。我的 utim
我正在尝试计算发生在同一日期的值的总和(在 XYZmin 中)。 我的数据看起来像这样, bar <- structure(list(date = structure(c(15622, 15622,
我是一名优秀的程序员,十分优秀!