gpt4 book ai didi

python - 矢量化以实现性能

转载 作者:行者123 更新时间:2023-12-04 19:28:45 24 4
gpt4 key购买 nike

我想避免在以下代码中使用 for 循环来实现性能。矢量化适合这种问题吗?

a = np.array([[0,1,2,3,4],
[5,6,7,8,9],
[0,1,2,3,4],
[5,6,7,8,9],
[0,1,2,3,4]],dtype= np.float32)

temp_a = np.copy(a)

for i in range(1,a.shape[0]-1):
for j in range(1,a.shape[1]-1):
if a[i,j] > 3:
temp_a[i+1,j] += a[i,j] / 5.
temp_a[i-1,j] += a[i,j] / 5.
temp_a[i,j+1] += a[i,j] / 5.
temp_a[i,j-1] += a[i,j] / 5.
temp_a[i,j] -= a[i,j] * 4. / 5.
a = np.copy(temp_a)

最佳答案

你基本上是在做卷积,对边界进行一些特殊处理。

请尝试以下操作:

from scipy.signal import convolve2d


# define your filter
f = np.array([[0.0, 0.2, 0.0],
[0.2,-0.8, 0.2],
[0.0, 0.2, 0.0]])

# select parts of 'a' to be used for convolution
b = (a * (a > 3))[1:-1, 1:-1]

# convolve, padding with zeros ('same' mode)
c = convolve2d(b, f, mode='same')

# add the convolved result to 'a', excluding borders
a[1:-1, 1:-1] += c

# treat the special cases of the borders
a[0, 1:-1] += .2 * b[0, :]
a[-1, 1:-1] += .2 * b[-1, :]
a[1:-1, 0] += .2 * b[:, 0]
a[1:-1, -1] += .2 * b[:, -1]

它给出了以下结果,这与嵌套循环相同。
[[  0.    2.2   3.4   4.6   4. ]
[ 6.2 2.6 4.2 3. 10.6]
[ 0. 3.4 4.8 6.2 4. ]
[ 6.2 2.6 4.2 3. 10.6]
[ 0. 2.2 3.4 4.6 4. ]]

关于python - 矢量化以实现性能,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48055971/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com