- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
考虑 zip
的这个定义对于由 Peano 数字索引的通常向量长度:
{-# language DataKinds #-}
{-# language KindSignatures #-}
{-# language GADTs #-}
{-# language TypeOperators #-}
{-# language StandaloneDeriving #-}
{-# language FlexibleInstances #-}
{-# language FlexibleContexts #-}
module Vector
where
import Prelude hiding (zip)
data N
where
Z :: N
S :: N -> N
data Vector (n :: N) a
where
VZ :: Vector Z a
(:::) :: a -> Vector n a -> Vector (S n) a
infixr 1 :::
deriving instance Show a => Show (Vector n a)
class Zip z
where
zip :: z a -> z b -> z (a, b)
instance Zip (Vector n) => Zip (Vector (S n))
where
zip (x ::: xs) (y ::: ys) = (x, y) ::: zip xs ys
instance Zip (Vector Z)
where
zip _ _ = VZ
-- ^
-- λ :t zip (1 ::: 2 ::: 3 ::: VZ) (4 ::: 5 ::: 6 ::: VZ)
-- zip (1 ::: 2 ::: 3 ::: VZ) (4 ::: 5 ::: 6 ::: VZ)
-- :: (Num a, Num b) => Vector ('S ('S ('S 'Z))) (a, b)
-- λ zip (1 ::: 2 ::: 3 ::: VZ) (4 ::: 5 ::: 6 ::: VZ)
-- (1,4) ::: ((2,5) ::: ((3,6) ::: VZ))
GHC.TypeLits
.让我们使用它:
module Vector
where
import Prelude hiding (zip)
import GHC.TypeLits
data Vector (n :: Nat) a
where
VZ :: Vector 0 a
(:::) :: a -> Vector n a -> Vector (n + 1) a
infixr 1 :::
deriving instance Show a => Show (Vector n a)
class Zip z
where
zip :: z a -> z b -> z (a, b)
instance Zip (Vector n) => Zip (Vector (n + 1))
where
zip (x ::: xs) (y ::: ys) = (x, y) ::: zip xs ys
instance Zip (Vector 0)
where
zip _ _ = VZ
• Illegal type synonym family application in instance:
Vector (n + 1)
• In the instance declaration for ‘Zip (Vector (n + 1))’
|
28 | instance Zip (Vector n) => Zip (Vector (n + 1))
| ^^^^^^^^^^^^^^^^^^^^
zip :: Vector n a -> Vector n b -> Vector n (a, b)
zip (x ::: xs) (y ::: ys) = (x, y) ::: zip xs ys
zip VZ VZ = VZ
Vector.hs:25:47: error:
• Could not deduce: n2 ~ n1
from the context: n ~ (n1 + 1)
bound by a pattern with constructor:
::: :: forall a (n :: Nat). a -> Vector n a -> Vector (n + 1) a,
in an equation for ‘zip’
at Vector.hs:25:6-13
or from: n ~ (n2 + 1)
bound by a pattern with constructor:
::: :: forall a (n :: Nat). a -> Vector n a -> Vector (n + 1) a,
in an equation for ‘zip’
at Vector.hs:25:17-24
‘n2’ is a rigid type variable bound by
a pattern with constructor:
::: :: forall a (n :: Nat). a -> Vector n a -> Vector (n + 1) a,
in an equation for ‘zip’
at Vector.hs:25:17-24
‘n1’ is a rigid type variable bound by
a pattern with constructor:
::: :: forall a (n :: Nat). a -> Vector n a -> Vector (n + 1) a,
in an equation for ‘zip’
at Vector.hs:25:6-13
Expected type: Vector n1 b
Actual type: Vector n2 b
• In the second argument of ‘zip’, namely ‘ys’
In the second argument of ‘(:::)’, namely ‘zip xs ys’
In the expression: (x, y) ::: zip xs ys
• Relevant bindings include
ys :: Vector n2 b (bound at Vector.hs:25:23)
xs :: Vector n1 a (bound at Vector.hs:25:12)
|
25 | zip (x ::: xs) (y ::: ys) = (x, y) ::: zip xs ys
| ^^
TypeLits
不能没用?..它应该如何工作?
最佳答案
TypeLits
上没有感应,默认情况下确实使它们几乎无用,但您可以通过两种方式改善这种情况。
使用 ghc-typelits-natnormalise
.这是一个 GHC 插件,它为类型检查器添加了一个算术求解器,并导致 GHC 考虑许多相等 Nat
表达式相等。这非常方便,并且与下一个解决方案兼容。您的 zip
开箱即用。
假设您需要的任何属性。 为了避免潜在的内存安全问题,您应该只假设真实陈述的证明,并且只假设等式或其他计算上不相关的数据类型的证明。例如,您的 zip
工作方式如下:
{-# language
RankNTypes, TypeApplications, TypeOperators,
GADTs, TypeInType, ScopedTypeVariables #-}
import GHC.TypeLits
import Data.Type.Equality
import Unsafe.Coerce
data Vector (n :: Nat) a
where
VZ :: Vector 0 a
(:::) :: a -> Vector n a -> Vector (n + 1) a
lemma :: forall n m k. (n :~: (m + 1)) -> (n :~: (k + 1)) -> m :~: k
lemma _ _ = unsafeCoerce (Refl @n)
vzip :: Vector n a -> Vector n b -> Vector n (a, b)
vzip VZ VZ = VZ
vzip ((a ::: (as :: Vector m a)) :: Vector n a)
((b ::: (bs :: Vector k b)) :: Vector n b) =
case lemma @n @m @k Refl Refl of
Refl -> (a, b) ::: vzip as bs
关于haskell - 如何将归纳推理应用于 `GHC.TypeLits.Nat` ?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51917531/
在 Haskell 中,类型声明使用双冒号,即 (::),如 not::Bool -> Bool。 但是在许多语法与 Haskell 类似的语言中,例如榆树、 Agda 、他们使用单个冒号(:)来声明
insertST :: StateDecoder -> SomeState -> Update SomeState SomeThing insertST stDecoder st = ... Stat
如果这个问题有点含糊,请提前道歉。这是一些周末白日梦的结果。 借助 Haskell 出色的类型系统,将数学(尤其是代数)结构表达为类型类是非常令人愉快的。我的意思是,看看 numeric-prelud
我有需要每 5 分钟执行一次的小程序。 目前,我有执行该任务的 shell 脚本,但我想通过 CLI 中的键为用户提供无需其他脚本即可运行它的能力。 实现这一目标的最佳方法是什么? 最佳答案 我想你会
RWH 面世已经有一段时间了(将近 3 年)。在在线跟踪这本书的渐进式写作之后,我渴望获得我的副本(我认为这是写书的最佳方式之一。)在所有相当学术性的论文中,作为一个 haskell 学生,读起来多么
一个经典的编程练习是用 Lisp/Scheme 编写一个 Lisp/Scheme 解释器。可以利用完整语言的力量来为该语言的子集生成解释器。 Haskell 有类似的练习吗?我想使用 Haskell
以下摘自' Learn You a Haskell ' 表示 f 在函数中用作“值的类型”。 这是什么意思?即“值的类型”是什么意思? Int 是“值的类型”,对吗?但是 Maybe 不是“值的类型”
现在我正在尝试创建一个基本函数,用于删除句子中的所有空格或逗号。 stringToIntList :: [Char] -> [Char] stringToIntList inpt = [ a | a
我是 Haskell 的新手,对模式匹配有疑问。这是代码的高度简化版本: data Value = MyBool Bool | MyInt Integer codeDuplicate1 :: Valu
如何解释这个表达式? :t (+) (+3) (*100) 自 和 具有相同的优先级并且是左结合的。我认为这与 ((+) (+3)) (*100) 相同.但是,我不知道它的作用。在 Learn
这怎么行 > (* 30) 4 120 但这不是 > * 30 40 error: parse error on input ‘*’ 最佳答案 (* 30) 是一个 section,它仍然将 * 视为
我想创建一个函数,删除满足第二个参数中给定谓词的第一个元素。像这样: removeFirst "abab" ( 'b') = "abab" removeFirst [1,2,3,4] even =
Context : def fib(n): if n aand returns a memoized version of the same function. The trick is t
我明白惰性求值是什么,它是如何工作的以及它有什么优势,但是你能解释一下 Haskell 中什么是严格求值吗?我似乎找不到太多关于它的信息,因为惰性评估是最著名的。 他们各自的优势是什么。什么时候真正使
digits :: Int -> [Int] digits n = reverse (x) where x | n digits 1234 = [3,1,2,4]
我在 F# 中有以下代码(来自一本书) open System.Collections.Generic type Table = abstract Item : 'T -> 'U with ge
我对 Haskell 比较陌生,过去几周一直在尝试学习它,但一直停留在过滤器和谓词上,我希望能得到帮助以帮助理解。 我遇到了一个问题,我有一个元组列表。每个元组包含一个 (songName, song
我是 haskell 的初学者,我试图为埃拉托色尼筛法定义一个简单的函数,但它说错误: • Couldn't match expected type ‘Bool -> Bool’
我是 Haskell 语言的新手,我在使用 read 函数时遇到了一些问题。准确地说,我的理解是: read "8.2" + 3.8 应该返回 12.0,因为我们希望返回与第二个成员相同的类型。我真正
当我尝试使用真实项目来驱动它来学习 Haskell 时,我遇到了以下定义。我不明白每个参数前面的感叹号是什么意思,我的书上好像也没有提到。 data MidiMessage = MidiMessage
我是一名优秀的程序员,十分优秀!