gpt4 book ai didi

conv-neural-network - 每个类(class)中应有多少张(最少)图像用于训练YOLO?

转载 作者:行者123 更新时间:2023-12-04 18:55:46 26 4
gpt4 key购买 nike

我正在尝试在自定义数据集上实现YOLOv2。每个类(class)都需要最少数量的图像吗?

最佳答案

每个类(class)没有用于培训的最低图像。当然,您所拥有的数字越小,模型收敛速度越慢,精度也会降低。
根据Alexey的说法(重要的 fork 暗网和YOLO v4的创建者),重要的是如何改善对象检测:

For each object which you want to detect - there must be at least 1similar object in the Training dataset with about the same: shape,side of object, relative size, angle of rotation, tilt, illumination.So desirable that your training dataset include images with objects atdiffrent: scales, rotations, lightings, from different sides, ondifferent backgrounds - you should preferably have 2000 differentimages for each class or more, and you should train 2000*classesiterations or more


https://github.com/AlexeyAB/darknet
因此,我想如果要获得最佳精度,则每个类(class)至少应有2000张图像。但是每堂课也不错1000。即使每个类别有数百张图像,您仍然可以获得不错的(不是最佳的)结果。只要收集尽可能多的图像即可。

关于conv-neural-network - 每个类(class)中应有多少张(最少)图像用于训练YOLO?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55356982/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com